References
- H. Chen, X. He, L. Qing, Y. Wu, C. Ren, R. E. Sheriff & C. Zhu. (2022). Real-world single image super-resolution: A brief review. Information Fusion, 79, 124-145. DOI : 10.1016/j.inffus.2021.09.005
- Y. Zhang, Y. Huang, K. Wang, G. Qi & J. Zhu. (2023). Single image super-resolution reconstruction with preservation of structure and texture details. Mathematics, 11(1), 216. DOI : 10.3390/math11010216
- Z. Hui, J. Li, X. Gao & X. Wang. (2021). Progressive perception-oriented network for single image super-resolution. Information Sciences, 546, 769-786. DOI : 10.1016/j.ins.2020.08.114
- B. Niu et al. (2020). Single image super-resolution via a holistic attention network. In Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XII 16 (pp. 191-207). Springer International Publishing. DOI : 10.1007/978-3-030-58610-2_12
- F. Fang, J. Li & T. Zeng. (2020). Soft-edge assisted network for single image super-resolution. IEEE Transactions on Image Processing, 29, 4656-4668. DOI : 10.1109/TIP.2020.2973769
- M. Haris, G. Shakhnarovich & N. Ukita, (2020). Deep back-projectinetworks for single image super-resolution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(12), 4323-4337. DOI : 10.1109/TPAMI.2020.3002836
- S. M. A. Bashir, Y. Wang, M. Khan & Y. Niu. (2021). A comprehensive review of deep learning-based single image super-resolution. PeerJ Computer Science, 7, e621. DOI : 10.1016/j.neucom.2019.09.035
- B. Liu & D. Ait-Boudaoud, (2020). Effective image super resolution via hierarchical convolutional neural network. Neurocomputing, 374, 109-116. DOI : 10.1016/j.neucom.2019.09.035
- C. Dong, C. C. Loy, K. He & X. Tang. (2015). Image super-resolution using deep convolutional networks. IEEE transactions on pattern analysis and machine intelligence, 38(2), 295-307. DOI : 10.1109/TPAMI.2015.2439281
- J. Kim, J. K. Lee & K. M. Lee. (2016). Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1646-1654). DOI : 10.1109/CVPR.2016.182
- B. Lim, S. Son, Kim, H., Nah, S., & Mu Lee, K. (2017). Enhanced deep residual networks for single image super-resolution. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops (pp. 136-144). DOI : 10.48550/arXiv.1707.02921
- Y. Zhang, Y. Tian, Y. Kong, B. Zhong & Y. Fu. (2018). Residual dense network for image super-resolution. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2472-2481). DOI : 10.48550/arXiv.1802.08797
- Y. Huang, J. Li, X. Gao, Y. Hu & W. Lu. (2021). Interpretable detail-fidelity attention network for single image super-resolution. IEEE Transactions on Image Processing, 30, 2325-2339. DOI : 10.1109/TIP.2021.3050856
- Z. Lu & Y. Chen. (2022). Single image super-resolution based on a modified U-net with mixed gradient loss. signal, image and video processing, 1-9. DOI : 10.1007/s11760-021-02063-5
- G. Wu, J. Jiang & X. Liu. (2023). A practical contrastive learning framework for single-image super-resolution. IEEE Transactions on Neural Networks and Learning Systems. DOI: 10.1109/TNNLS.2023.3290038