DOI QR코드

DOI QR Code

Effect of sawdust on cordycepin production from the medicinal fungus Pesilomyces tenuipes in submerged culture

  • Si Young Ha (Department of Environmental Forest Science/Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Ji Young Jung (Department of Environmental Forest Science/Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Jae-Kyung Yang (Department of Environmental Forest Science/Institute of Agriculture and Life Science, Gyeongsang National University)
  • Received : 2023.08.28
  • Accepted : 2023.09.21
  • Published : 2023.09.30

Abstract

Cordycepin (3'-deoxyadenosine) is a nucleoside analog known for its diverse range of biological activities. This study investigated the effect of different types of sawdust on the production of the bioactive compound cordycepin. The results of the study showed that different types of wood sawdust affected the biosynthesis of cordycepin and a significant increase was observed when the conventional SDB medium was replaced with 1% NaOH treated pine sawdust. To optimize cordycepin production from Paecilomyces tenuipes in a medium containing 1% NaOH-pretreated pine sawdust, we employed Response Surface Methodology (RSM) in its Box-Behnken design (BBD) canonical form. The optimal conditions were determined as follows: a particle size of 109.5111-mesh (140 ㎛) for 1% NaOH-pretreated pine sawdust, an input weight of 21.1679 g/L, and an incubation time of 73.8423 hours. According to our model, this combination is expected to yield a maximum cordycepin content of 896.1428 ㎍/mL. Experimental validation of this prediction was performed using the suggested optimal conditions, resulting in an average cordycepin content of 922.6771 ㎍/mL across three replicates, thus confirming the model's accuracy.

Keywords

Acknowledgement

This study was carried out with the support of 'R&D Program for Forest Science Technology (Project No. "2023478B10-2325-BC0361382116530001")' provided by Korea Forest Service (Korea Forestry Promotion Institute).

References

  1. Cui JD. 2010. Optimization of medium for phenylalanine ammonia lyase production in E. coli using response surface methodology. Korean Journal of Chemical Engineering 27(1): 174-178. https://doi.org/10.1007/s11814-009-0234-3
  2. Cui JD, Zhang BZ. 2011. Comparison of culture methods on exopolysaccharide production in the submerged culture of Cordyceps militaris and process optimization. Letters in Applied Microbiology 52(2): 123-128. https://doi.org/10.1111/j.1472-765X.2010.02987.x
  3. Cui J, Cui L, Jia S, Su Z, Zhang, S. 2016. Hybrid crosslinked lipase aggregates with magnetic nanoparticles: A robust and recyclable biocatalysis for the epoxidation of oleic acid. Agricultural and Food Chemistry 64: 7179-7187. https://doi.org/10.1021/acs.jafc.6b01939
  4. Dong CH, Xie XQ, Wang XL, Zhan Y, Yao YJ. 2009. Application of Box-Behnken design in optimisation for polysaccharides extraction from cultured mycelium of Cordyceps sinensis. Food and Bioproducts Processing 87(2): 139-144. https://doi.org/10.1016/j.fbp.2008.06.004
  5. Hsu TH, Shiao LH, Hsieh C, Chang DM. 2002. A comparison of the chemical composition and bioactive ingredients of the Chinese medicinal mushroom Dong Chong Xia Cao, its counterfeit and mimic, and fermented mycelium of Cordyceps sinensis. Food Chemistry 78(4): 463-469. https://doi.org/10.1016/S0308-8146(02)00158-9
  6. Hung TL, Keawsompong S, Hanh VT, Sivichai S, Hywel-Jones N. 2009. Effect of temperature on cordycepin production in Cordyceps militaris. Thai Journal of Agricultural Science 42(4): 219-225.
  7. Kim HG, Shrestha B, Lim SY, Yoon DH, Chang WC, Shin DJ, Han SK, Park SM, Park JH, Park HI. 2006. Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-ΚB through Akt and p38 inhibition in RAW 264.7 macrophage cells. European Journal of Pharmacology 545(2-3): 192-199. https://doi.org/10.1016/j.ejphar.2006.06.047
  8. Kim SW, Hwang HJ, Xu CP, Sung JM, Choi JW, Yum JW. 2003. Optimization of submerged culture process for the production of biomass and exo-polysaccharides by Cordyceps militaris C738. Journal of Applied Microbiology 94(1): 120-126. https://doi.org/10.1046/j.1365-2672.2003.01754.x
  9. Lee WY, Ahn JK, Park EJ, Ka KH. 2008. Effect of wood xylem flour in liquid culture on mycelial biomass of Lentinus lepideus and Lentinus edodes. The Korean Journal of Mycology 36(1): 45-50. https://doi.org/10.4489/KJM.2008.36.1.045
  10. Leung PH, Zhang QX, Wu JY. 2006. Mycelium cultivation, chemical composition and antitumour activity of a Tolypocladium sp. fungus isolated from wild Cordyceps sinensis. Journal of Applied Microbiology 101(2): 275-283. https://doi.org/10.1111/j.1365-2672.2006.02930.x
  11. Ling JY, Sun YJ, Zhang H, Peng L, Zhang CK. 2002. Measurement of cordycepin and adenosine in stroma of Cordyceps sp. by capillary zone electrophoresis (CZE). Journal of Bioscience and Bioengineering 94(4): 371-374. https://doi.org/10.1016/S1389-1723(02)80181-5
  12. Liu Z, Li P, Zhao D, Tang H, Guo J. 2011. Anti-inflammation effects of Cordyceps sinensis mycelium in focal cerebral ischemic injury rats. Inflammation 34(6): 639-644. https://doi.org/10.1007/s10753-010-9273-5
  13. Mao XB, Zhong JJ. 2004. Hyperproduction of cordycepin by two-stage dissolved oxygen control in submerged cultivation of medicinal mushroom Cordyceps militaris in bioreactors. Biotechnology Progress 20(5): 1408-1413. https://doi.org/10.1021/bp049765r
  14. Mao XB, Eksiwong T, Chauvatcharin S, Zhong JJ. 2005. Optimization of carbon source and carbon / nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Process Biochemistry 40(5): 1667-1672. https://doi.org/10.1016/j.procbio.2004.06.046
  15. Masuda M, Urabe E, Sakurai A, Sakakibara M. 2006. Production of cordycepin by surface culture using the medicinal mushroom Cordyceps militaris. Enzyme and Microbial Technology 39(4): 341-646. https://doi.org/10.1016/j.enzmictec.2005.11.010
  16. Olatunji OJ, Feng Y, Olatunji OO, Tang J, Ouyang Z, Su Z. 2016. Cordycepin protects PC12 cells against 6-hydroxydopamine induced neurotoxicity via its antioxidant properties. Biomedicine & Pharmacotherapy 81: 7-14. https://doi.org/10.1016/j.biopha.2016.03.009
  17. Shih IL, Tsai KL, Hsieh C. 2007. Effects of culture conditions on the mycelial growth and bioactive metabolite production in submerged culture of Cordyceps militaris. Biochemical Engineering Journal 33(3): 193-201. https://doi.org/10.1016/j.bej.2006.10.019
  18. Shukla A, Zhang YH, Dubey P, Margrave JL, Shukla SS. 2002. The role of sawdust in the removal of unwanted materials from water. Journal of Hazardous Materials 95(1-2): 137-152. https://doi.org/10.1016/S0304-3894(02)00089-4
  19. Tuli HS, Sandhu SS, Sharma AK. 2014. Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin. 3 Biotech 4: 1-12. https://doi.org/10.1007/s13205-013-0121-9
  20. Yoon SY, Park SJ, Park YJ. 2018. The anticancer properties of Cordycepin and their underlying mechanisms. International Journal of Molecular Sciences 19(10): Article number 3027.
  21. Zhang BZ, Gui JD, Zhao GX, Jia SR. 2010. Modeling and optimization of phenylalanine ammonia lyase stabilization in recombinant Escherichia coli for the continuous synthesis of L-phenylalanine on the statistical-based experimental design. Journal of Agricultural and Food Chemistry 58: 2795-2800. https://doi.org/10.1021/jf9036744