DOI QR코드

DOI QR Code

RGB LED 광원이 느타리류의 자실체 특성에 미치는 효과

The effect of RGB LED lights on oyster mushroom (Pleurotus spp.) fruit-body characteristics

  • 류재산 (한국농수산대학 버섯학과) ;
  • 나경숙 (한국농수산대학 버섯학과) ;
  • 김정한 (경기도원 친환경미생물연구센터) ;
  • 이정우 (한국원균) ;
  • 권희민 (농촌진흥청 국립농업과학원)
  • Jae-San Ryu (Department of Mushroom Science, Korea National College of Agriculture and Fisheries) ;
  • KyeongSook Na (Department of Mushroom Science, Korea National College of Agriculture and Fisheries) ;
  • Jeong-Han Kim (Eco-friendly Agriculture & Microorganism Research Institute, Gyeonggi-Do Agricultural Research & Extension Services) ;
  • Jeong Woo Lee (Hankuk Wonkyun) ;
  • Hee-Min Gwon (Department of Agrofood Resource, NIAS, RDA)
  • 투고 : 2023.07.25
  • 심사 : 2023.08.22
  • 발행 : 2023.09.30

초록

생육 시 사용하는 LED 조명색이 느타리류의 갓색과 수량, 형태에 어떤 영향을 미치는지 알고자 하였다. 주요결과는 다음과 같다. 자실체의 전체적인 형태는 LED 조명색별로 차이를 보였는데, 청색과 자색이 일반적으로 생산하는 버섯 형태와 유사하였고 녹색은 조명이 없거나 약한 곳에서 자란 버섯형태를 보였다. 전체 품종의 청색, 녹색, 자색 LED에서 키운 버섯의 갓명도의 평균은 각각 57.0, 57.4, 59.4였다. 원형1호와 황금산타리를 제외하고는 세가지 LED 색에 따라 갓 명도의 평균이 통계적으로 유의한 차이가 있었다. 갓의 적색도는 LED 조명과 품종에 따라 많은 차이가 관찰되었다. 청색, 녹색, 자색에서 생육한 자실체의 갓색이 모두 음의 값을 나타낸 품종은 곤지7호의 갓색돌연변이인 곤지7호M이 유일하였다. 곤지7호를 제외한 8개 품종에서 청색에서 갓의 적색도가 가장 높았다. 전체 품종의 LED 조명색별 평균 수확량은 자색이 68.0 g, 청색 58.3 g, 녹색 50.1 g 이었다. 청색에서 가장 수확량이 많은 품종은 곤지7호로 92.8 g이었고 같은 품종의 녹색 처리구에서는, 77.1 g, 자색에서는 98.6 g이 수확되었다. 발이소요일수는 자색에서 생육한 버섯의 평균값이 5.3일로 가장 짧고, 청색에서 5.8일, 자색에서 5.8일 순이었다. 자색에서 가장 짧은 발이소요일수를 보인 품종은 6개, 녹색에서는 3개, 청색에서는 2개였다. 자실체의 길이는 생육 시 조사한 LED 조명색에 따라 녹색(66.4 mm) > 자색(51.8 mm) > 청색 (46.8 mm)의 순으로 나타났다. 본 연구결과가 시장에서 요구하는 형질을 갖춘 버섯을 생산하는 기초가 될 것으로 사료한다.

Light plays an important role in fruit-body development and morphology during Pleurotus spp. cultivation. To understand the effects of light color on fruit-body properties, we evaluated the fruit-body characteristics of Pleurotus spp. Varieties cultivated under blue, red, and purple LED light sources. The main results are as follows: The overall fruit-body shape showed differences depending on the color of the LED light. The fruit-bodies of mushroom cultivated under blue and purple light were generally similar to the mushroom shapes typically produced, while those of mushroom cultivated under green light were abnormally shaped, probably due to the absence of effective light source. The average cap lightness of mushrooms cultivated under blue, green, and purple LED lights was 57.0, 57.4, and 59.4, respectively. The average cap lightness of all varieties except Wonhyeong1ho and Hwang-geumsantari cultivated under the three LED light sources were statistically significantly different (P<0.05). The cap redness varied significantly depending on the LED lighting and variety. Only Gonji7hoM, the cap color mutant of Gonji7ho, showed negative cap redness values under all three LED light sources. Among the eight varieties excluding Gonji7ho, the highest cap redness was observed when cultivated under the blue LED. The average harvest weight of the varieties cultivated under purple, blue, and green LED light were 68.0, 58.3, and 50.1 g, respectively. The yield of Gonji7ho, the mushroom variety with the highest yield, cultivated under blue, green, and purple LED light were 92.8, 77.1, and 98.6 g, respectively. The earliness when grown under the purple, blue, and green LED lights were 5.3, 5.8, and 5.8 days, respectively. Among the varieties, six, three, and two cultivars showed the shortest earliness under the purple, green, and blue LED, respectively. The fruit-body lengths were 66.4, 51.8, and 46.8 mm when cultivated under green, purple, and blue lights, respectively. These results are expected to serve as a foundation for producing mushrooms with traits demanded in the market.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1F1A1073715).

참고문헌

  1. Araujo NL, Avelino KV, Halabura MIW, Marim RA, Kassem ASS, Linde GA, Colauto NB, do Valle JS. 2021. Use of green light to improve the production of lignocellulose-decay enzymes by Pleurotus spp. in liquid cultivation. Enzyme Microb Technol 149: 109860.
  2. Bonatti M, Karnopp P, Soares HM, Furlan SA. 2004. Evaluation of Pleurotus ostreatusand Pleurotus sajor-cajunutritional characteristics when cultivated in different lignocellulosic wastes.Food Chem 88: 425-428. https://doi.org/10.1016/j.foodchem.2004.01.050
  3. Eger-Hummel G. 1980. Blue-light photomorphogenesis in mushrooms (Basidiomycetes). In Senger, H. (ed.), The Blue Light Syndrome. Proceedings in Life Sciences. Springer, Heidelberg, Germany. 555-562.
  4. Fuller KK, Loros JJ, Dunlap JC. 2015. Fungal photobiology: visible light as a signal for stress, space and time. Curr Genet61: 275-288.
  5. Guzman G. 2000. Genus Pleurotus(Jacq.: Fr.) P. Kumm. (Agaricomycetideae): diversity, taxonomic problems, and cultural and traditional medicinal uses. Int J Med Mushrooms 2: 95-123. https://doi.org/10.1615/IntJMedMushr.v2.i2.10
  6. Im CH, Park YH, Hammel KE, Park B, Kwon SW, Ryu H, Ryu JS. 2016. Construction of a genetic linkage map and analysis of quantitative trait loci associated with the agronomically important traits of Pleurotus eryngii. Fungal Genet Biol 92: 50-64. https://doi.org/10.1016/j.fgb.2016.05.002
  7. Jang KY, Jhune CS, Park JS, Cho SM, Weon HY, Cheong JC, Choi SG, Sung JM. 2003. Characterization of fruitbody morphology on various environmental conditions in Pleurotus ostreatus. Mycobiology 31: 145-150. https://doi.org/10.4489/MYCO.2003.31.3.145
  8. Jang MJ, Lee YH. 2014. The suitable mixed LED and light intensity for cultivation of oyster mushroom. J Mushrooms 12: 258-262. https://doi.org/10.14480/JM.2014.12.4.258
  9. Jhune CS, Kong WS, Yoo YB, Jang KY, Paik SB, Chun SC. 2006. Initiation and growth of fruitbody of oyster mushroom as affected by cultivation temperature. J Mushroom 4: 33-38.
  10. Leatham GF, Stahmann MA. 1987. Effect of light and aeration on fruiting of Lentinula edodes. Trans Br Mycol Soc 88: 9-20. https://doi.org/10.1016/S0007-1536(87)80180-8
  11. Lee SH, Kim MK, Jung H, Ryu JS. 2018. Characteristics of a newly bred Pleurotus eryngiicultivar, Gat_Aeryni. J Mushrooms 16: 186-191.
  12. Lee YH, Baek IS, Jang MJ, Jeoung YK, Lee HB, Chi JH. 2013. Effects of cultural characteristics of Lentinula edodesaccording to LED wavelength with sawdust substrate cultivation. J Mushrooms 11: 226-229. https://doi.org/10.14480/JM.2013.11.4.226
  13. Namba K, Inatomi S, Mori K, Shimosaka M, Okazaki M. 2002. Effects of LED lights on fruit-body production in Hypsizygus marmoreus. Mushroom Sci Biotechnol 10: 141-146.
  14. Oh MJ, Na KS, Jung HJ, Lee YK, Ryu JS. 2022. Comparative mitogenomics of Pleurotus ostreatusGonji7ho and its cap color mutant. J Mushrooms 20: 43-49.
  15. Qi Y, Sun X, Ma L, Wen Q, Qiu L, Shen J. 2020. Identification of two Pleurotus ostreatusblue light receptor genes (PoWC-1 and PoWC-2) and in vivo confirmation of complex PoWC-12 formation through yeast two hybrid system. Fungal Biol 124: 8-14. https://doi.org/10.1016/j.funbio.2019.10.004
  16. Richartz G, Maclellan AJ. 1987. Action spectra for hyphal aggregation, the first stage of fruiting, in the basidiomycete Pleurotus ostreatus. Photoche Photobio 45: 815-820. https://doi.org/10.1111/j.1751-1097.1987.tb07888.x
  17. Ryu JS, Kim MK, Song KW, Lee SD, Lee CH, Rho CW, Lee HS. 2006. The study of quality standard of Pleurotus eryngii. J Mushrooms 4: 129-134.
  18. Ryu JS, Na KS, Lee YK, Lee JW. 2022. Changes of pileus color, yield and morphological traits due to cultivation temperature in Pleurotus spp. J Mushrooms 20: 241-248.
  19. Ryu JS, Kim MK, Cho SH, Yun YC, Seo WM, Lee HS. 2005. Optimal CO2level for cultivation of Pleurotus eryngii. J Mushrooms 3: 95-99.
  20. Sakamoto Y. 2018. Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi. Fungal Bio Rev 32: 236-248. https://doi.org/10.1016/j.fbr.2018.02.003
  21. Sapaev J, Sapaev B, Erkinov Z, Baymuratova G, Eshbabaev T. 2020. Growing of pleurotus ostreatusmushrooms under the artificial light and its influence on d-vitamin content. IOP Conf Ser: Mater Sci Eng 883: 012127.
  22. Team RDC 2005. R: A language and environment for statistical computing. ISBN 3-900051-07-0. R Foundation for Statistical Computing. Vienna, Austria, 2013. url: http://www.R-project.org.
  23. Wang H, Tong X, Tian F, Jia C, Li C, Li Y. 2020. Transcriptomic profiling sheds light on the blue-light and red-light response of oyster mushroom (Pleurotus ostreatus). AMB Expr 10: 10.
  24. Zhang Y, Wu X, Huang C, Zhang Z, Gao W. 2022. Isolation and identification of pigments from oyster mushrooms with black, yellow and pink caps. Food Chem 372: 131171.