DOI QR코드

DOI QR Code

Case Study of Radiation Protection and Radiation Exposure

방사능 노출과 방사선 보호 사례 연구

  • Young Sil Min (Dept. of Pharmaceutical Science, Jungwon University)
  • 민영실 (중원대학교 식품제약학과 )
  • Received : 2023.06.13
  • Accepted : 2023.09.20
  • Published : 2023.09.30

Abstract

Recently, it is increasing that a issue of concern about radiation exposure. It affects soil, water, air, crops, etc., and in the long term, environmental pollution and food pollution occur, and it is considered to cause social problems and economic damage. Radiation exposure causes diseases and health problems, but as a method for diagnosing diseases, nuclear medicine tests such as X-ray imaging, CT, and PET-CT are conducted, and radiation isotopes are exposed for the purpose of cancer treatment. A Hungarian case study on radiation in water, particularly drinking water, following the release of radioactive waste from Fukushima, and an examination of the Larsemann Hills area in Antarctica, found that it was within the prescribed radioactivity limits of drinking water recommended by the World Health Organization. We looked at radioprotective agents, focusing on DNA damage, cell and organ damage, and cancer, and also investigated various literatures on ACE inhibitors, antioxidants, and natural substances among restoration materials. Although exposed to radiation in everyday life, the reason why it can be safe is probably because there is a radiation protection material and a recovery material for radiation exposure, so we are trying to find possible materials.

최근 방사능 노출에 대한 염려에 대한 이슈가 높아지고 있다. 토양, 물, 공기, 작물등에 영향을 주며 장기적으로 환경오염 및 식량오염이 발생하며 나아가 사회적인 혼란 및 경제적 타격을 초래할 것으로 여겨진다. 방사능 노출로 질병을 일으키기도 하지만, 질병진단을 위한 방법으로, X선촬영, CT, PET-CT등 핵의학 검사를 실시하고, 암치료 목적으로 방사선 동위원소에 노출시키기도 한다. 후쿠시마 방사능 폐기물 방류소식으로 물, 특히 식수에 포함되는 방사선에 대한 헝가리의 사례 연구 및 남극 대륙의 Larsemann Hills 지역 검사에서 세계 보건 기구에서 권장하는 음용수의 규정된 방사능 한계 내에 있었다. DNA손상, 세포 및 장기손상, 암에 관련된 내용을 중심으로 방사선 보호제를 살펴보고, 또한 복구물질중 ACE억제제, 항산화제, 천연물질등에 관하여 여러 문헌을 조사하였다. 일상에서 방사능에 노출되지만 안전할 수 있는 이유는 아마도 방사선보호물질, 방사능 피폭에 대한 복구 물질이 있을 것으로 여겨, 가능한 물질들을 찾아보고자 한다.

Keywords

References

  1. Jo, H., & Ban, C. (2016). Aptamer-nanoparticle complexes as powerful diagnostic and therapeutic tools. Exp Mol Med., 48(5), e230. DOI : 10.1038/emm.2016.44. 
  2. Hosseinimehr, S. J. (2007). Trends in the development of radioprotective agents. Drug Discov Today, 12(19-20), 794-805 DOI : 10.1016/j.drudis.2007.07.017 
  3. van der Veen, S. J. et al. (2015). ACE inhibition attenuates radiation-induced cardiopulmonary damag. Radiother Oncol, 114(1), 96-103. DOI : 10.1016/j.radonc.2014.11.017. 
  4. Gultekin, F. A. et al. (2013). Effects of ozone oxidative preconditioning on radiation-induced organ damage in rats. Eur J Cancer., 48(14), 2117-2124. DOI : 10.1093/jrr/rrs073 
  5. Prasad, K N., Cole, W. C., Kumar, B., & Prasad, K. C. (2002). Pros and cons of antioxidant use during radiation therapy. Cancer Treat Rev, 28(2), 79-91. DOI : 10.1053/ctrv.2002.0260 
  6. Sharygin, V. L., Pulatova, M. K., Shliakova, T. G., Mitrokhin, Y. I., & Todorov, I. N. (2005). Activation of Deoxyribonucleotide Synthesis by Radioprotectants and Antioxidants as a Key Stage in Formation of Body Resistance to DNA-Damaging Factors. Izv Akad Nauk Ser Biol, (4), 401-422. PMID: 16212261. 
  7. Nemavarkar, P. S., Chourasia, B. K., & Pasupathy, K. (2004). Detection of γ-Irradiation Induced DNA Damage and Radioprotection of Compounds in Yeast Using Comet Assay. J Radiat Res., 45(2), 169-174. DOI : 10.1269/jrr.45.169 
  8. Kasai, H., Crain, P. F., Kuchino, Y., Nishimura, S., Ootsuyama, A., & Tanooka, H. (1986). Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair. Carcinogenesis, 7(11), 1849-1851. DOI: 10.1093/carcin/7.11.1849 
  9. Vozenin-Brotons, M. C., Milliat, F., Linard, C., Strup, C., Francois, A., Sabourin, J. C., ... & Mathe, D. (2004). Gene expression profile in human late radiation enteritis obtained by high-density cDNA array hybridization. Radiation Research, 161(3), 299-311. DOI : 10.1667/rr3128 
  10. Y. R. Seo, M. R. Kelley, M. L. Smith. (2002). Selenomethionine regulation of p53 by a ref1-dependent redox mechanism. Proc Natl Acad Sci U S A, 99(22), 14548-14553. DOI : 10.1073/pnas.212319799 
  11. L. J. Egan, L. Eckmann, F. R. Greten, S. Chae, Z. Li, G. M. Myhre, S. Robine, M. Karin, M. Kagnoff. (2004). IkappaB-kinasebeta-dependent NF-kappaB activation provides radioprotection to the intestinal epithelium. Proc Natl Acad Sci U S A, 101(8), 2452-2457. DOI : 10.1073/pnas.0306734101 
  12. Abdollahi, H. (2014). Probiotic-based protection of normal tissues during radiotherapy. Nutrition, 30(4), 495-496. DOI : 10.1016/j.nut.2013.09.006 
  13. Abdollahi, H. (2015). Beneficial effects of cellular autofluorescence following ionization radiation: Hypothetical approaches for radiation protection and enhancing radiotherapy effectiveness. Med Hypotheses., 84(3), 194-198. DOI : 10.1016/j.mehy.2014.12.021 
  14. Son, J. C. (2013). Phospholipase D inhibitor enhances radiosensitivity of breast cancer cells. Exp Mol Med, 45(8), e38. DOI : 10.1038/emm.2013.75 
  15. W. Kim, K. Seong, B. Youn. (2011). Phenylpropanoids in radioregulation: double edged sword. Exp Mol Med, 43(6), 323-333. DOI : 10.3858/emm.2011.43.6.034 
  16. Wedlake, L. J. et al. (2012). Evaluating the efficacy of statins and ACE-inhibitors in reducing gastrointestinal toxicity in patients receiving radiotherapy for pelvic malignancies. Br J Pharmacol, 164(8), 2064- 2072. DOI : 10.1016/j.ejca.2011.12.034 
  17. Murley, J. S., Nantajit, D., Baker, K. L., Kataoka, Y., Li, J. J., & Grdina, D. J. (2008). Maintenance of manganese superoxide dismutase (SOD2)-mediated delayed radioprotection induced by repeated administration of the free thiol form of amifostine. Radiat Res, 169(5), 495-505. DOI : 10.1667/RR1194.1 
  18. Xie, J. et al. (2017). Therapeutic Nanoparticles Based on Curcumin and Bamboo Charcoal Nanoparticles for Chemo-Photothermal Synergistic Treatment of Cancer and Radioprotection of Normal Cells. ACS Appl Mater Interfaces, 9(16), 14281-14291 DOI : 10.1021/acsami.7b02622 
  19. Bjorklund, G., Semenova, Y., Pivina, L., Dadar, M., Rahman, M. M., Aaseth, J., & Chirumbolo, S. (2020). Uranium in drinking water: a public health threat. Arch Toxicol, 94(5), 1551-1560. DOI : 10.1007/s00204-020-02676-8
  20. V P Wellner, M E Anderson, R N Puri, G L Jensen, A Meister (2012). Radioprotection by glutathione ester: transport of glutathione ester into human lymphoid cells and fibroblasts. Proc Natl Acad Sci U S A, 81(15), 4732-4735. DOI: 10.1073/pnas.81.15.4732 
  21. Yu, H., Aravindan, N., Xu, J., & Natarajan, M. (2017). Inter- and intra-cellular mechanism of NF-kB-dependent survival advantage and clonal expansion of radio-resistant cancer cells. Cell Signal, 31, 105-111. DOI : 10.1016/j.cellsig.2017.01.011 
  22. Sitko, J. C. et al. (2008). SOCS3 regulates p21 expression and cell cycle arrest in response to DNA damage. Cellular signalling, 20(12), 2221-2230. DOI : 10.1016/j.cellsig.2008.08.011 
  23. Nalla, A. K., Gogineni, V. R., Gupta, R., Dinh, D. H., & Rao, J. S. (2011). Suppression of uPA and uPAR blocks radiation-induced MCP-1 mediated recruitment of endothelial cells in meningioma. Cell Signal, 23(8), 1299-1230 DOI : 10.1016/j.cellsig.2011.03.011 
  24. Floyd, R. A. (1990). The role of 8-hydroxyguanine in carcinogenesis. Carcinogenesis, 11(9), 1447-1450 DOI : 10.1093/carcin/11.9.1447 
  25. T. Kim, T. Huang, J. Jang, M. Kim, H. Kim, J. Lee, J. Pack, J. Seo, W. Park. (2008). Local exposure of 849 MHz and 1763 MHz radiofrequency radiation to mouse heads does not induce cell death or cell proliferation in brain. Exp Mol Med, 40(3), 294-303. DOI: 10.3858/emm.2008.40.3.294 
  26. Gerschman, R., Gilbert, D. L., Nye, S. W., Dwyer, P., & Fenn, W. O. (1954). Oxygen poisoning and x-irradiation: a mechanism in common. Science, 119(3097), 623-626. DOI: 10.1126/science.119.3097.623 
  27. Xu, W., Yang, F., Shen, X., Fan, S., Liu, Q., & Wang, D. (2014). Polysaccharide isolated from Parmelia tinctorum ameliorates ionizing irradiation-induced damage in mice. J Radiat Res, 55(4), 641-647. DOI : 10.1093/jrr/rrt224 
  28. Csondor, K., Bajak, P., Surbeck, H., Izsak, B., Horvath, A., Vargha, M., & Eross, A. (2020). Transient nature of riverbank filtered drinking water supply systems - A new challenge of natural radioactivity assessment. J Environ Radioact, 211, 106072. DOI : 10.1016/j.jenvrad.2019.106072 
  29. Pal, R., Patra, A. C., Bakshi, A. K., Dhabekar, B., Reddy, P. J., Sengupta, P., & Sapra, B. K. (2021). Investigations on baseline levels for natural radioactivity in soils, rocks, and lakes of Larsemann Hills in East Antarctica. Environ Monit Assess, 193(12), 822. DOI : 10.1007/s10661-021-09446-8