DOI QR코드

DOI QR Code

가로세로 폭의 제어가 가능한 슁글드 디자인 태양광 모듈 제조

Fabrication of Shingled Design Solar Module with Controllable Horizontal and Vertical Width

  • 박민준 (그린에너지나노연구그룹, 한국생산기술연구원) ;
  • 김민섭 (그린에너지나노연구그룹, 한국생산기술연구원) ;
  • 이은비 (그린에너지나노연구그룹, 한국생산기술연구원) ;
  • 김유진 (그린에너지나노연구그룹, 한국생산기술연구원) ;
  • 정채환 (그린에너지나노연구그룹, 한국생산기술연구원)
  • Min-Joon Park (Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology) ;
  • Minseob Kim (Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology) ;
  • Eunbi Lee (Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology) ;
  • Yu-Jin Kim (Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology) ;
  • Chaehwan Jeong (Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology)
  • 투고 : 2023.05.16
  • 심사 : 2023.08.28
  • 발행 : 2023.09.30

초록

Recently, the installation of photovoltaic modules in urban areas has been increasing. In particular, the demand for solar modules installed in a limited space is increasing. However, since the crystalline silicon solar module's size is proportional to the solar cell's size, it is difficult to manufacture a module that can be installed in a limited area. In this study, we fabricated a solar module with a shingled design that can control horizontal and vertical width using a bi-directional laser scribing method. We fabricated a string cell with a width of 1/5 compared to the existing shingled design string cells using a bi-directional laser scribing method, and we fabricated a solar module by connecting three strings in parallel. Finally, we achieved a conversion power of 5.521 W at a 103 mm × 320 mm area.

키워드

과제정보

본 연구는 2021년도 산업통산자원부의 재원으로 한국에너지기술평가원(KETEP)의 지원 과제인 "장기신뢰성(25년 이상)과 안전성이 확보된 건물형 태양광 핵심소재 개발"(No. 20213030010290)을 통해 수행한 과제입니다.

참고문헌

  1. Snapshot of Global PV Markets 2023. Available online: https://iea-pvps.org/wp-content/uploads/2023/04/IEA_PVPS_Snapshot_2023.pdf
  2. Photovoltaic report. Available online: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf
  3. Rakowska J., Maciejczak M., Batyk I. M., Farelnik E., "Rural-Urban Differences in Solar Renewable Energy Investments Supported by Public Finance in Poland," Energies, 15, 8476 1-19 (2022).
  4. Jelle B. P., Breivik C., Rokenes H. D., "Building integrated photovoltaic products: A state-of-the-art review and future research opportunities," Sol. Energy Mater. Sol. Cells, 100, 69-96 (2012).
  5. Kuhn T. E., Erban C., Heinrich M., Eisenlohr J., Ensslen F., Neuhaus D. H., "Review of technological design options for building integrated photovoltaics (BIPV)," Energy & Buildings, 231, 110381 1-26 (2021).
  6. Baumgartner F., Buchel A., Carigiet F., Baumann T., Epp R., Wirtz A., Huegeli A., Graf U., ""URBAN PLANT" light-weight Solar System FOR PARKING AND Other URBAN DOUBLE USE APPLICATIONS," 28th European Photovoltaic Solar Energy Conference and Exhibition, Paris (2013).
  7. Martins A. C., Chapuis V., Virtuani A., Ballif C., "Robust Glass-Free Lightweight Photovoltaic Modules With Improved Resistance to Mechanical Loads and Impact," IEEE J. Photovolt., 9, 245-251 (2019). https://doi.org/10.1109/JPHOTOV.2018.2876934
  8. Lee H., Song H., "Current status and perspective of colored photovoltaic modules," WIREs Energy and Environ., 10, e403 1-31 (2021). https://doi.org/10.1002/wene.403
  9. Han H., Jia X., Ma C., Wu Y.,"A novel laser scribing method combined with the thermal stress cleaving for the crystalline silicon solar cell separation in mass production," Sol. Energy Mater. Sol. Cells, 240, 111714 1-8 (2022). https://doi.org/10.1016/j.solmat.2022.111714