DOI QR코드

DOI QR Code

Bandgap Engineering in CZTSSe Thin Films via Controlling S/(S+Se) Ratio

  • Vijay C. Karade (Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH)) ;
  • Jun Sung Jang (Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University) ;
  • Kuldeep Singh, Gour (Surface Engineering Group, Advanced Materials & Processes Division, CSIR-National Metallurgical Laboratory) ;
  • Yeonwoo Park (Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH)) ;
  • Hyeonwook, Park (Department of Hydrogen Energy, Korea Institute of Energy Technology (KENTECH)) ;
  • Jin Hyeok Kim (Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University) ;
  • Jae Ho Yun (Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH))
  • Received : 2023.07.31
  • Accepted : 2023.08.30
  • Published : 2023.09.30

Abstract

The earth-abundant element-based Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cells (TFSCs) have attracted greater attention in the photovoltaic (PV) community due to their rapid development in device power conversion efficiency (PCE) >13%. In the present work, we demonstrated the fine-tuning of the bandgap in the CZTSSe TFSCs by altering the sulfur (S) to the selenium (Se) chalcogenide ratio. To achieve this, the CZTSSe absorber layers are fabricated with different S/(S+Se) ratios from 0.02 to 0.08 of their weight percentage. Further compositional, morphological, and optoelectronic properties are studied using various characterization techniques. It is observed that the change in the S/(S+Se) ratios has minimal impact on the overall Cu/(Zn+Sn) composition ratio. In contrast, the S and Se content within the CZTSSe absorber layer gets altered with a change in the S/(S+Se) ratio. It also influences the overall absorber quality and gets worse at higher S/(S+Se). Furthermore, the device performance evaluated for similar CZTSSe TFSCs showed a linear increase and decrease in the open circuit voltage (Voc) and short circuit current density (Jsc) of the device with an increasing S/(S+Se) ratio. The external quantum efficiency (EQE) measured also exhibited a linear blue shift in absorption edge, increasing the bandgap from 1.056 eV to 1.228 eV, respectively.

Keywords

Acknowledgement

This work was supported in part by the National Research Foundation of Korea (NRF) (grant no. 2023R1A2C2003612) and in part by the program of Phased development of carbon neutral technologies (grant no. 2022M3J1A1085374) through NRF, both funded by Ministry of Science and ICT (MSIT).

References

  1. Song, S., Lin, H., Sherman, P., Yang, X., Chen, S., Lu, X., Lu, T., Chen, X., McElroy, M. B., "Deep Decarbonization of the Indian Economy: 2050 Prospects for Wind, Solar, and Green Hydrogen," iScience 2022, 25(6), 104399. https://doi.org/10.1016/j.isci.2022.104399.
  2. van Ruijven, B. J., De Cian, E., Sue Wing, I., "Amplification of Future Energy Demand Growth Due to Climate Change," Nat. Commun, 10(1), 2762 (2019). https://doi.org/10.1038/s41467-019-10399-3.
  3. Nakamura, M., Yamaguchi, K., Kimoto, Y., Yasaki, Y., Kato, T., Sugimoto, H., "Cd-Free Cu(In,Ga)(Se,S) 2 Thin-Film Solar Cell With Record Efficiency of 23.35%," IEEE J. Photovoltaics, 9(6), 1863-1867 (2019). https://doi.org/10.1109/JPHOTOV.2019.2937218.
  4. Shin, D., Saparov, B., Mitzi, D. B., "Defect Engineering in Multinary Earth-Abundant Chalcogenide Photovoltaic Materials," Adv. Energy Mater., 7(11), 1602366 (2017). https://doi.org/10.1002/aenm.201602366.
  5. Karade, V. C., Sutar, S. S., Shin, S. W., Suryawanshi, M. P., Jang, J. S., Gour, K. S., Kamat, R. K., Yun, J. H., Dongale, T. D., Kim, J. H., "Machine Learning Assisted Analysis, Prediction, and Fabrication of High-Efficiency CZTSSe Thin Film Solar Cells," Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202303459.
  6. Gong, Y., Zhu, Q., Li, B., Wang, S., Duan, B., Lou, L., Xiang, C., Jedlicka, E., Giridharagopal, R., Zhou, Y., Dai, Q., Yan, W., Chen, S., Meng, Q., Xin, H., "Elemental De-Mixing-Induced Epitaxial Kesterite/CdS Interface Enabling 13%-Efficiency Kesterite Solar Cells," Nat. Energy, 7(10), 966-977 (2022). https://doi.org/10.1038/s41560-022-01132-4.
  7. Karade, V. C., Lim, J., Gour, K. S., Jang, J. S., Shin, S. J., Kim, J. H., Yang, B. S., Choi, H., Enkhbat, T., Kim, J., Yun, J. S., Jang, H. N., Yun, J. H., Park, J., Kim, J. H., "Overcoming the Limitations of Low-Bandgap Cu 2 ZnSn(S,Se) 4 Devices under Indoor Light Conditions: From Design to Prototype IoT Application," J. Mater. Chem. A, 10(44), 23831-23842 (2022). https://doi.org/10.1039/D2TA06565G.
  8. Gour, K. S., Karade, V., Babar, P., Park, J., Lee, D. M., Singh, V. N., Kim, J. H., "Potential Role of Kesterites in Development of Earth-Abundant Elements-Based Next Generation Technology," Sol. RRL, 5(4), 2000815 (2021). https://doi.org/10.1002/solr.202000815.
  9. Park, J., Yoo, H., Karade, V., Gour, K. S., Choi, E., Kim, M., Hao, X., Shin, S. J., Kim, J., Shim, H., Kim, D., Kim, J. hyeok, Yun, J., Kim, J. hyeok., "Investigation of Low Intensity Light Performances of Kesterite CZTSe, CZTSSe, and CZTS Thin Film Solar Cells for Indoor Applications," J. Mater. Chem. A, 8 (29), 14538-14544 (2020). https://doi.org/10.1039/D0TA04863A.
  10. Zhou, J., Xu, X., Wu, H., Wang, J., Lou, L., Yin, K., Gong, Y., Shi, J., Luo, Y., Li, D., Xin, H., Meng, Q., "Control of the Phase Evolution of Kesterite by Tuning of the Selenium Partial Pressure for Solar Cells with 13.8% Certified Efficiency," Nat. Energy, 8(5), 526-535 (2023). https://doi.org/10.1038/s41560-023-01251-6.
  11. Kumar, M., Dubey, A., Adhikari, N., Venkatesan, S., Qiao, Q., "Strategic Review of Secondary Phases, Defects and Defect-Complexes in Kesterite CZTS-Se Solar Cells. Energy Environ," Sci., 8(11), 3134-3159 (2015). https://doi.org/10.1039/C5EE02153G.
  12. Kaur, K., Kumar, N., Kumar, M., "Strategic Review of Interface Carrier Recombination in Earth Abundant Cu-Zn-Sn-S-Se Solar Cells: Current Challenges and Future Prospects," J. Mater. Chem. A, 5(7), 3069-3090 (2017). https://doi.org/10.1039/C6TA10543B.
  13. Chen, S., Gong, X. G., Walsh, A., Wei, S.-H., "Defect Physics of the Kesterite Thin-Film Solar Cell Absorber Cu2ZnSnS4," Appl. Phys. Lett., 96(2), 021902 (2010). https://doi.org/10.1063/1.3275796.
  14. Kim, Y.-C., Jeong, H.-J., Lee, S. K., Kim, S.-T., Jang, J.-H., "The Effect of S/(S+Se) Ratios on the Formation of Secondary Phases in the Band Gap Graded Cu2ZnSn(S,Se)4 Thin Film Solar Cells," J. Alloys Compd., 793, 289-294 (2019). https://doi.org/10.1016/j.jallcom.2019.04.118.
  15. Yu, J., Deng, H., Zhang, Q., Tao, J., Sun, L., Yang, P., Chu, J., "The Role of Tuning Se/(S + Se) Ratio in the Improvement of Cu2MnSn(S, Se)4 Thin Films Properties and Photovoltaic Device Performance," Sol. Energy, 179, 279-285 (2019). https://doi.org/10.1016/j.solener.2018.12.076.
  16. Shockley, W., "Queisser, H. J. Detailed Balance Limit of Efficiency of P-n Junction Solar Cells," J. Appl. Phys., 32(3), 510-519 (1961). https://doi.org/10.1063/1.1736034.
  17. Gohri, S., Madan, J., Pandey, R., Sharma, R., "Design and Analysis of Lead-Free Perovskite-CZTSSe Based Tandem Solar Cell," Opt. Quantum Electron., 55(2), 171 (2023). https://doi.org/10.1007/s11082-022-04381-5.
  18. Wang, D., Guo, H., Wu, X., Deng, X., Li, F., Li, Z., Lin, F., Zhu, Z., Zhang, Y., Xu, B., Jen, A. K. -Y., "Interfacial Engineering of Wide-Bandgap Perovskites for Efficient Perovskite/CZTSSe Tandem Solar Cells," Adv. Funct. Mater., 32(2), 2107359 (2022). https://doi.org/10.1002/adfm.202107359.
  19. Karade, V. C., Suryawanshi, M. P., Jang, J. S., Gour, K. S., Jang, S., Park, J., Kim, J. H., Shin, S. W., "Understanding Defects and Band Tailing Characteristics and Their Impact on the Device Performance of Cu 2 ZnSn(S,Se) 4 Solar Cells," J. Mater. Chem. A, 10 (15), 8466-8478 (2022). https://doi.org/10.1039/D2TA00165A.
  20. Karade, V., Choi, E., Gang, M. G., Yoo, H., Lokhande, A., Babar, P., Jang, J. S., Seidel, J., Yun, J. S., Park, J., Kim, J. H., "Achieving Low V OC -Deficit Characteristics in Cu 2 ZnSn (S,Se) 4 Solar Cells through Improved Carrier Separation," ACS Appl. Mater. Interfaces, 13(1), 429-437 (2021). https://doi.org/10.1021/acsami.0c16936.
  21. Xie, H., Dimitrievska, M., Fontane, X., Sanchez, Y., Lopez-Marino, S., Izquierdo-Roca, V., Bermudez, V., Perez-Rodriguez, A., Saucedo, E., "Formation and Impact of Secondary Phases in Cu-Poor Zn-Rich Cu2ZnSn(S1-Se )4 (0≤y≤1) Based Solar Cells," Sol. Energy Mater. Sol. Cells, 140, 289-298 (2015). https://doi.org/10.1016/j.solmat.2015.04.023.
  22. Li, J., Kim, S. Y., Nam, D., Liu, X., Kim, J. H., Cheong, H., Liu, W., Li, H., Sun, Y., Zhang, Y., "Tailoring the Defects and Carrier Density for beyond 10% Efficient CZTSe Thin Film Solar Cells," Sol. Energy Mater. Sol. Cells, 159, 447-455 (2017). https://doi.org/10.1016/J.SOLMAT.2016.09.034.
  23. Singh, O. P., Vijayan, N., Sood, K. N., Singh, B. P., Singh, V. N., "Controlled Substitution of S by Se in Reactively Sputtered CZTSSe Thin Films for Solar Cells," J. Alloys Compd., 648, 595-600 (2015). https://doi.org/10.1016/j.jallcom.2015.06.276.
  24. Just, J., Sutter-Fella, C. M., Lutzenkirchen-Hecht, D., Frahm, R., Schorr, S., Unold, T., "Secondary Phases and Their Influence on the Composition of the Kesterite Phase in CZTS and CZTSe Thin Films," Phys. Chem. Chem. Phys., 18(23), 15988-15994 (2016). https://doi.org/10.1039/C6CP00178E.
  25. Sravani, L., Routray, S., Pradhan, K. P., Piedrahita, M. C., "Kesterite Thin-Film Solar Cell: Role of Grain Boundaries and Defects in Copper-Zinc-Tin-Sulfide and Copper-Zinc-Tin-Selenide," Phys. status solidi, 218(16), 2100039 (2021). https://doi.org/10.1002/pssa.202100039.
  26. Nisika, Kaur, K., Kumar, M., "Progress and Prospects of CZTSSe/CdS Interface Engineering to Combat High Open-Circuit Voltage Deficit of Kesterite Photovoltaics: A Critical Review," J. Mater. Chem. A, 8(41), 21547-21584 (2020). https://doi.org/10.1039/d0ta06450e.
  27. Zeng, C., Liang, Y., Zeng, L., Zhang, L., Zhou, J., Huang, P., Hong, R., "Effect of S/(S+Se) Ratio during the Annealing Process on the Performance of Cu2ZnSn(S,Se)4 Solar Cells Prepared by Sputtering from a Quaternary Target," Sol. Energy Mater. Sol. Cells, 203, 110167 (2019). https://doi.org/10.1016/j.solmat.2019.110167.
  28. Lee, J., Enkhbat, T., Han, G., Sharif, M. H., Enkhbayar, E., Yoo, H., Kim, J. H., Kim, S. Y., Kim, J. H., "Over 11 % Efficient Eco-Friendly Kesterite Solar Cell: Effects of S-Enriched Surface of Cu2ZnSn(S,Se)4 Absorber and Band Gap Controlled (Zn,Sn)O Buffer," Nano Energy, 78, 105206 (2020). https://doi.org/10.1016/J.NANOEN.2020.105206.
  29. Guo, H., Meng, R., Wang, G., Wang, S., Wu, L., Li, J., Wang, Z., Dong, J., Hao, X., Zhang, Y., "Band-Gap-Graded Cu 2 ZnSn(S,Se) 4 Drives Highly Efficient Solar Cells," Energy Environ. Sci., 15(2), 693-704 (2022). https://doi.org/10.1039/D1EE03134A.