DOI QR코드

DOI QR Code

아문젠해 서남극 빙붕 용융과 영향에 대한 고찰: 연구동향 및 과학적 질문

Review of the Melting of West Antarctic Ice Shelves in the Amundsen Sea and Its Influence: Research Issues and Scientific Questions

  • 윤승태 (경북대학교 자연과학대학 지구시스템과학부)
  • Seung-Tae Yoon (School of Earth System Sciences, College of Natural Sciences, Kyungpook National University)
  • 투고 : 2023.05.23
  • 심사 : 2023.07.09
  • 발행 : 2023.09.30

초록

The collapse of ice shelves is a process that can severely increase the rise of global sea-levels through the reduction of the buttressing effect of ice shelves and the consequent acceleration of the ice flow of ice sheets. In recent years, the West Antarctic ice shelves in the Amundsen Sea, whose buttressing effect is essential for a great part of the West Antarctic ice sheet, have been experiencing the most rapid melting and thinning in the world. The melting of the West Antarctic ice shelves is caused primarily by heat transported by Circumpolar Deep Water (CDW). For this reason, it is important to investigate ice-ocean interactions that could influence the melting of ice shelves and evaluate the stability of West Antarctic ice shelves. A lot of researchers have been actively investigating the West Antarctic ice shelves in the Amundsen Sea. High-impact journals have recognized the importance of and published studies on ice-ocean interactions occurring near and under the ice shelves as well as the connections among ice shelves. However, in situ observations are limited due to extreme weather and sea-ice conditions near the ice shelves; therefore, many scientific questions remain unanswered. This study introduces the characteristics of the Amundsen Sea and investigate the past and latest research issues in this region. This study also gives suggestions regarding important scientific questions and directions for future research that should help early-career scientists take the lead in future research on the melting dynamics of the West Antarctic ice shelves in the Amundsen Sea.

키워드

과제정보

이 논문은 한국연구재단(NRF-2022R1I1A3063629)과 급격한 남극빙상 용융에 따른 근미래 전지구 해수면 상승예측기술개발(RS-2023-00256677)의 지원을 받아 작성되었습니다.

참고문헌

  1. Adusumilli S, Fricker HA, Medley B, Padman L, Siegfried MR (2020) Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves. Nat Geosci 13(9):616-620. doi:10.1038/s41561-020-0616-z
  2. Arneborg L, Wahlin AK, Bjork G, Liljebladh B, Orsi AH (2012) Persistent inflow of warm water onto the central Amundsen shelf. Nat Geosci 5(12):876-880. doi:10.1038/ngeo1644
  3. Arrigo KR, Lowry KE, van Dijken GL (2012) Annual changes in sea ice and phytoplankton in polynyas of the Amundsen Sea, Antarctica. Deep-Sea Res Pt II 71-76:5-15. doi:10.1016/j.dsr2.2012.03.006
  4. Arrigo KR, van Dijken GL (2003) Phytoplankton dynamics within 37 Antarctic coastal polynya systems. J Geophys Res-Oceans 108(C8):27-1-27-18. doi:10.1029/2002JC001739
  5. Arthern RJ, Williams CR (2017) The sensitivity of West Antarctica to the submarine melting feedback. Geophys Res Lett 44(5):2352-2359. doi:10.1002/2017gl072514
  6. Assmann KM, Jenkins A, Shoosmith DR, Walker DP, Jacobs SS, Nicholls KW (2013) Variability of Circumpolar Deep Water transport onto the Amundsen Sea Continental shelf through a shelf break trough. J Geophys Res-Oceans 118(12):6603-6620. doi:10.1002/2013jc008871
  7. Barker PF, Filippelli GM, Florindo F, Martin EE, Scher HD (2007) Onset and role of the Antarctic Circumpolar Current. Deep-Sea Res Pt II 54(21-22):2388-2398. doi:10.1016/j.dsr2.2007.07.028
  8. Baumhoer CA, Dietz AJ, Kneisel C, Paeth H, Kuenzer C (2021) Environmental drivers of circum-Antarctic glacier and ice shelf front retreat over the last two decades. Cryosphere 15(5):2357-2381. doi:10.5194/tc-15-2357-2021
  9. Biddle LC, Heywood KJ, Kaiser J, Jenkins A (2017) Glacial meltwater identification in the Amundsen Sea. J Phys Oceanogr 47(4):933-954. doi:10.1175/jpo-d-16-0221.1
  10. Biddle LC, Loose B, Heywood KJ (2019) Upper ocean distribution of glacial meltwater in the Amundsen Sea, Antarctica. J Geophys Res-Oceans 124(10):6854-6870. doi:10.1029/2019jc015133
  11. Bintanja R, van Oldenborgh GJ, Drijfhout SS, Wouters B, atsman CA (2013) Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat Geosci 6(5):376-379. doi:10.1038/ngeo1767
  12. Boehme L, Rosso I (2021) Classifying Oceanographic Structures in the Amundsen Sea, Antarctica. Geophys Res Lett 48(5):1-8. doi:10.1029/2020gl089412
  13. Bradley AT, Bett DT, Dutrieux P, De Rydt J, Holland PR (2022) The influence of Pine Island Ice Shelf calving on basal melting. J Geophys Res-Oceans 127(9):1-27. doi: 10.1029/2022jc018621
  14. Budillon G, Castagno P, Aliani S, Spezie G, Padman L (2011) Thermohaline variability and Antarctic bottom water formation at the Ross Sea shelf break. Deep-Sea Res Pt I 58(10):1002-1018. doi:10.1016/j.dsr.2011.07.002
  15. Castagno P, Capozzi V, DiTullio GR, Falco P, Fusco G, Rintoul SR, Spezie G, Budillon G (2019) Rebound of shelf water salinity in the Ross Sea. Nat Commun 10(1): 5441. doi:10.1038/s41467-019-13083-8
  16. Christianson K, Bushuk M, Dutrieux P, Parizek BR, Joughin IR, Alley RB, Shean DE, Abrahamsen EP, Anandakrishnan S, Heywood KJ, Kim TW, Lee SH, Nicholls K, Stanton T, Truffer M, Webber BGM, Jenkins A, Jacobs S, Bindschadler R, Holland DM (2016) Sensitivity of Pine Island Glacier to observed ocean forcing. Geophys Res Lett 43(20):10817-10825. doi:10.1002/2016gl070500
  17. Davis PED, Jenkins A, Nicholls KW, Brennan PV, Abrahamsen EP, Heywood KJ, Dutrieux P, Cho KH, Kim TW (2018) Variability in basal melting beneath Pine Island Ice Shelf on weekly to monthly timescales. J Geophys Res-Oceans 123(11):8655-8669. doi:10.1029/2018jc014464
  18. Davis PED, Nicholls KW, Holland DM, Schmidt BE, Washam P, Riverman KL, Arthern RJ, Vankova I, Eayrs C, Smith JA, Anker PGD, Mullen AD, Dichek D, Lawrence JD, Meister MM, Clyne E, Basinski A, Rignot E, Queste BY, Boehme L, Heywood KJ, Anandakrishnan S, Makinson K (2023) Suppressed basal melting in the eastern Thwaites Glacier grounding zone. Nature 614(7948):479-485. doi: 10.1038/s41586-022-05586-0
  19. De Rydt J, Gudmundsson GH (2016) Coupled ice shelf-ocean modeling and complex grounding line retreat from a seabed ridge. J Geophys Res-Earth Surf 121(5):865-880. doi:10.1002/2015jf003791
  20. De Rydt J, Holland PR, Dutrieux P, Jenkins A (2014) Geometric and oceanographic controls on melting beneath Pine Island Glacier. J Geophys Res-Oceans 119(4):2420-2438. doi:10.1002/2013jc009513
  21. De Rydt J, Reese R, Paolo FS, Gudmundsson GH (2021) Drivers of Pine Island Glacier speed-up between 1996 and 2016. Cryosphere 15(1):113-132. doi:10.5194/tc-15-113-2021
  22. Dotto TS, Heywood KJ, Hall RA, Scambos TA, Zheng Y, Nakayama Y, Hyogo S, Sn ow T, Wahlin AK, Wild C, Truffer M, Muto A, Alley KE, Boehme L, Bortolotto GA, Tyler SW, Pettit E (2022) Ocean variability beneath Thwaites Eastern Ice Shelf driven by the Pine Island Bay Gyre strength. Nat Commun 13(1):7840. doi:10.1038/s41467-022-35499-5
  23. Dotto TS, Naveira Garabato A, Bacon S, Tsamados M, Holland PR, Hooley J, Frajka-Williams E, Ridout A, Meredith MP (2018) Variability of the Ross Gyre, Southern Ocean: drivers and responses revealed by satellite altimetry. Geophys Res Lett 45(12):6195-6204. doi:10.1029/2018gl078607
  24. Dotto TS, Naveira Garabato AC, Bacon S, Holland PR, Kimura S, Firing YL, Tsamados M, Wahlin AK, Jenkins A (2019) Wind-driven processes controlling oceanic heat delivery to the Amundsen Sea, Antarctica. J Phys Oceanogr 49(11):2829-2849. doi:10.1175/jpo-d-19-0064.1
  25. Dutrieux P, De Rydt J, Jenkins A, Holland PR, Ha HK, Lee SH, Steig EJ, Ding Q, Abrahamsen EP, Schroder M (2014a) Strong sensitivity of Pine Island Ice-Shelf melting to climatic variability. Science 343(6167):174-178. doi: 10.1126/science.1244341
  26. Dutrieux P, Stewart C, Jenkins A, Nicholls KW, Corr HFJ, Rignot E, Steffen K (2014b) Basal terraces on melting ice shelves. Geophys Res Lett 41:5506-5513. doi:10.1002/2014GL060618
  27. Feldmann J, Levermann A (2015) Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin. Proc Natl Acad Sci USA 112(46):14191-14196. doi:10.1073/pnas.1512482112
  28. Fretwell P, Pritchard HD, Vaughan DG, Bamber JL, Barran d NE, Bell R, Bianchi C, Binghan RG, Blankenship DD, Casassa G, Catania G, Callens D, Conway H, Cook AJ, Corr HFJ, Damaske D, Damm V, Ferraccioli F, Forsberg R, Fujita S, Gim Y, Gogineni P, Griggs JA, Hindamarsh RCA, Holmlund P, Holt JW, Jacobel RW, Jenkins A, Jokat W, Joran T, King EC, Kohler J, Krabill W, Riger-Kusk M, Langley KA, Leitchenkov G, Leuschen C, Luyendyk BP, Matsuoka MK, Mouginot J, Nitsche FO, Nogi Y, Nost OA, Popov SV, Rign ot E, Rippin DM, Rivera A, Roberts J, Ross N, Siegert MJ, Smith AM, Steinhage D, Studinger M, Sun B, Tinto BK, Welch BC, Wilson D, Young DA, Xiangbin C, Zirizzotti A (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7(1):375-393. doi:10.5194/tc7-375-2013
  29. Garabato AC, Forryan A, Dutrieux P, Brannigan L, Biddle LC, Heywood KJ, Jenkins A, Firing YL, Kimura S (2017) Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf. Nature 542(7640):219-222. doi:10.1038/nature20825
  30. Goldberg DN, Smith TA, Narayanan SHK, Heimbach P, Morlighem M (2020) Bathymetric influences on Antarctic Ice-Shelf melt rates. J Geophys Res-Oceans 125(11): e2020JC016370. doi:10.1029/2020jc016370
  31. Gomez-Valdivia F, Holland PR, Siahaan A, Dutrieux P, Young E (2023) Projected West Antarctic Ocean Warming caused by an Expansion of the Ross Gyre. Geophys Res Lett 50(6):e2023GL102978. doi:10.1029/2023gl102978
  32. Greene CA, Gardner AS, Schlegel NJ, Fraser AD (2022) Antarctic calving loss rivals ice-shelf thinning. Nature 609(7929):948-953. doi:10.1038/s41586-022-05037-w
  33. Gudmundsson GH (2013) Ice-shelf buttressing and the stability of marine ice sheets. Cryosphere 7(2):647-655. doi:10.5194/tc-7-647-2013
  34. Ha HK, Wahlin AK, Kim TW, Lee SH, Lee JH, Lee HJ, Hong CS, Arneborg L, Bjork G, Kalen O (2014) Circulation and modification of warm deep water on the central Amundsen Shelf. J Phys Oceanogr 44(5):1493-1501. doi: 10.1175/jpo-d-13-0240.1
  35. Heimbach P, Losch M (2012) Adjoint sensitivities of sub-ice-shelf melt rates to ocean circulation under the Pine Island Ice Shelf, West Antarctica. Ann of Glaciol 53(60): 59-69 doi:10.3189/2012/AoG60A025
  36. Hellmer HH, Kauker F, Timmermann R, Determann J, Rae J (2012) Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature 485(7397):225-228. doi:10.1038/nature11064
  37. Hellmer HH, Kauker F, Timmermann R, Hattermann T (2017) The fate of the Southern Weddell Sea Continental Shelf in a warming climate. J Clim 30(12):4337-4350. doi:10.1175/jcli-d-16-0420.1
  38. Heywood K, Biddle L, Boehme L, Dutrieux P, Fedak M, Jenkins A, Jones RW, Kaiser J, Mallett H, Garabato AC, Renfrew IA, Stevens DP, Webber BGM (2016) Between the devil and the deep blue sea: the role of the Amundsen Sea Continental Shelf in exchanges between ocean and ice shelves. Oceanogr 29(4):118-129. doi:10.5670/oceanog.2016.104
  39. Hogan KA, Larter RD, Graham AGC, Arthern R, Kirkham JD, Totten RL, Jordan TA, Clark R, Fitzgerald V, Wahlin AK, Anderson JB, Hillenbrand CD, Nitsche FO, Simkins L, Simth JA, Gohl K, Arndt JE, Hong J, Wellner J (2020) Revealing the former bed of Thwaites Glacier using sea-floor bathymetry: implications for warm-water routing and bed controls on ice flow and buttressing. Cryosphere 14(9):2883-2908. doi:10.5194/tc-14-2883-2020
  40. Holland DM, Nicholls KW, Basinski A (2020) The Southern Ocean and its interaction with the Antarctic Ice Sheet. Science 367(6484):1326-1330. doi:10.1126/science.aaz5491
  41. Holland PR, Bracegirdle TJ, Dutrieux P, Jenkins A, Steig EJ (2019) West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing. Nat Geosci 12(9):718-724. doi:10.1038/s41561-019-0420-9
  42. IPCC (2019) Special report on the ocean and cryosphere in a changing climate. http://www.ipcc.ch/srocc/ Accessed 22 May 2023
  43. IPCC (2023) Sixth Assessment Report (AR6) synthesis report: climate change 2023. http://www.ipcc.ch/report/sixth-assessment-report-cycle/ Accessed 22 May 2023
  44. Jacobs S, Giulivi C, Dutrieux P, Rignot E, Nitsche F, Mouginot J (2013) Getz Ice Shelf melting response to changes in ocean forcing. J Geophys Res-Oceans 118(9):4152-4168. doi:10.1002/jgrc.20298
  45. Jacobs S, Jenkins A, Hellmer H, Giulivi C, Nitsche F, Huber B, Guerrero R (2012) The Amundsen Sea and the Antarctic Ice sheet. Oceanogr 25(3):154-163. doi:10.5670/oceanog.2012.90
  46. Jacobs SS, Giulivi CF (2010) Large multidecadal salinity trends near the Pacific-Antarctic Continental Margin. J Clim 23(17):4508-4524. doi:10.1175/2010jcli3284.1
  47. Jacobs SS, Giulivi CF, Mele PA (2002) Freshening of the Ross Sea during the late 20th century. Science 297(5580): 386-389. doi:10.1126/science.1069574
  48. Jacobs SS, Helmer HH, Doake CSM, Jenkins A, Frolich RM (1992) Melting of ice shelves and the mass balance of Antarctica. J Glaciol 38(130):375-387. doi:10.3189/s0022143000002252
  49. Jacobs SS, Jenkins A, Giulivi CF, Dutrieux P (2011) Stronger ocean circulation and increased melting under Pine Island Glacier Ice Shelf. Nat Geosci 4(8):519-523. doi:10.1038/ngeo1188
  50. Jenkins A (1999) The impact of melting ice on ocean waters. J Phys Oceanogr 29(9):2370-2381. doi:10.1175/1520-0485(1999)029<2370:Tiomio>2.0.Co;2
  51. Jenkins A, Dutrieux P, Jacobs S, Steig EJ, Gudnumdsson GH, Smith J, Heywood KJ (2016) Decadal ocean forcing and Antarctic ice sheet response: lessons from the Amundsen Sea. Oceanogr 29(4):106-117. doi:10.5670/oceanog.2016.103
  52. Jenkins A, Shoosmith D, Dutrieux P, Jacobs S, Kim TW, Lee SH, Ha HK, Stammerjohn S (2018) West Antarctic ice sheet retreat in the Amundsen Sea driven by decadal oceanic variability. Nat Geosci 11(10):733-738. doi:10.1038/s41561-018-0207-4
  53. Jeong S, Howat IM, Bassis JN (2016) Accelerated ice shelf rifting and retreat at Pine Island Glacier, West Antarctica. Geophys Res Lett 43(22). doi:10.1002/2016gl071360
  54. Joughin I, Alley RB (2011) Stability of the West Antarctic ice sheet in a warmin g world. Nat Geosci 4(8):506-513. doi:10.1038/ngeo1194
  55. Joughin I, Smith BE, Medley B (2014) Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science 344(6185):735-738. doi: 10.1126/science.1249055
  56. Jourdain NC, Mathiot P, Merin o N, Duran d G, Le Sommer J, Spence P, Dutrieux P, Madec G (2017) Ocean circulation and sea-ice thinning induced by melting ice shelves in the Amundsen Sea. J Geophys Res-Oceans 122:2250-2573. doi:10.1002/2016JC012509
  57. Jourdain NC, Molines J-M, Le Sommer J, Mathiot P, Chanut J, Lavergne C, Madec G (2019) Simulating or prescribing the influence of tides on the Amundsen Sea ice shelves. Ocean Model 133:44-55. doi:10.1016/j.ocemod.2018.11.001
  58. Jun SY, Kim JH, Choi J, Kim SJ, Kim BM, An SI (2020) The internal origin of the west-east asymmetry of Antarctic climate change. Sci Adv 6(24):eaaz1490. doi:10.1126/sciadv.aaz1490
  59. Kalen O, Assmann KM, Wahlin AK, Ha HK, Kim TW, Lee SH (2016) Is the oceanic heat flux on the central Amundsen sea shelf caused by barotropic or baroclinic currents? Deep-Sea Res Pt II 123:7-15. doi:10.1016/j.dsr2.2015.07.014
  60. Kim C-S, Kim T-W, Cho K-H, Ha HK, Lee SH, Kim HC, Lee JH (2016) Variability of the Antarctic coastal current in the Amundsen Sea. Estuar Coast Shelf Sci 181:123-133. doi:10.1016/j.ecss.2016.08.004
  61. Kimura S, Jenkins A, Regan H, Holland PR, Assmann KM, Whitt DB, Van Wessem M, Jan van de Berg W, Reijmer CH, Dutrieux P (2017) Oceanographic controls on the variability of ice-shelf basal melting and circulation of glacial meltwater in the Amundsen Sea Embayment, Antarctica. J Geophys Res-Oceans 122(12):10131-10155. doi:10.1002/2017jc012926
  62. Klin ck JM (1998) Heat an d salt chan ges on the con tin en tal shelf west of the Antarctic Peninsula between January 1993 and January 1994. J Geophys Res-Oceans 103(C4): 7617-7636. doi:10.1029/98jc00369
  63. Le Brocq AM, Ross N, Griggs JA, Bin ghan RG, Corr HFJ, Ferraccioli F, Jenkins A, Jordan TA, Payne AJ, Rippin DM, Siegert MJ (2013) Evidence from ice shelves for channelized meltwater flow beneath the Antarctic Ice Sheet. Nat Geosci 6(11):945-948. doi:10.1038/ngeo1977
  64. Macdonald GJ, Ackley SF, Mestas-Nunez AM, Blanco-Cabanillas A (2023) Evolution of the dynamics, area, and ice production of the Amundsen Sea Polynya, Antarctica, 2016-2021. Cryosphere 17(2):457-476. doi:10.5194/tc-17-457-2023
  65. Mallett HKW, Boehme L, Fedak M, Heywood KJ, Stevens DP, Roquet F (2018) Variation in the distribution and pro perties of circumpolar deep water in the Eastern Amundsen Sea, on seasonal timescales, using seal-borne tags. Geophys Res Lett 45(10):4982-4990. doi:10.1029/2018gl077430
  66. Malyarenko A, Robinson NJ, Williams MJM, Langhorne PJ (2019) A wedge mechanism for summer surface water in flow in to the Ross Ice Shelf Cavity. J Geophys Res-Oceans 124(2):1196-1214. doi:10.1029/2018jc014594
  67. Miles T, Lee SH, Wahlin A, Ha HK, Kim TW, Assmann KM, Schofield O (2016) Glider observations of the Dotson Ice Shelf outflow. Deep-Sea Res Pt II 123:16-29. doi:10.1016/j.dsr2.2015.08.008
  68. Milillo P, Rignot E, Rizzoli P, Scheuchl B, Mouginot J, Bello J, Iraola P (2019) Heterogeneous retreat and ice melt of Thwaites Glacier, West Antarctica. Sci Adv 5(1):eaau3433. doi:10.1126/sciadv.aau3433
  69. Morlighem M, Rignot E, Binder T, Blankenship D, Drews R, Eagles G, Eisen O, Ferraccioli F, Forsberg R, Fretwell P, Goel V, Greenbaum JS, Gudmundsson H, Guo J, Helm V, Hofstede C, Howat I, Humbert A, Jokat W, Karlsson NB, Lee WS, Matsuoka K, Millan R, Mougin ot J, Paden J, Pattyn F, Roberts J, Rosier S, Ruppel A, Seroussi H, Simth EC, Steinhage D, Sun B, van den Broeke MR, van Ommen TD, van Wessem M, Young DA (2020) Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat Geosci 13(2):132-137. doi:10.1038/s41561-019-0510-8
  70. Nakayama Y, Manucharyan G, Zhang H, Dutrieux P, Torres HS, Klein P, Seroussi H, Schodlok M, Rignot E, Menemenlis D (2019) Pathways of ocean heat towards Pine Island and Thwaites grounding lines. Sci Rep 9(1):16649. doi:10.1038/s41598-019-53190-6
  71. Nakayama Y, Menemenlis D, Schodlok M, Rignot E (2017) Amundsen and Bellingshausen Seas simulation with optimized ocean, sea ice, and thermodynamic ice shelf model parameters. J Geophys Res-Oceans 122(8):6180-6195. doi: 10.1002/2016jc012538
  72. Nakayama Y, Menemenlis D, Zhang H, Schodlok M, Rignot E (2018) Origin of Circumpolar Deep Water intruding onto the Amundsen and Bellingshausen Sea continental shelves. Nat Commun 9(1):3403. doi:10.1038/s41467-018-05813-1
  73. Nakayama Y, Timmermann R, H. Hellmer H (2020) Impact of West Antarctic ice shelf melting on Southern Ocean hydrography. Cryosphere 14(7):2205-2216. doi:10.5194/tc-14-2205-2020
  74. Nakayama Y, Timmermann R, Schroder M, Hellmer HH (2014) On the difficulty of modeling Circumpolar Deep Water intrusions onto the Amundsen Sea continental shelf. Ocean Model 84:26-34. doi:10.1016/j.ocemod.2014.09.007
  75. Oh JH, Park W, Lim HG, Noh KM, Jin EK, Kug JS (2020) Impact of Antarctic meltwater forcing on East Asian Climate under greenhouse warming. Geophys Res Lett 47(21). doi:10.1029/2020gl089951
  76. Orsi AH, Whitworth T, Nowlin WD (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res Pt I 42(5):641-673. doi:10.1016/0967-0637(95)00021-W
  77. Orsi AH, Wiederwohl CL (2009) A recount of Ross Sea waters. Deep-Sea Res Pt II 56(13-14):778-795. doi:10.1016/j.dsr2.2008.10.033
  78. Paolo FS, Fricker HA, Padman L (2015) Volume loss from Antarctic ice shelves is accelerating. Science 348(6232): 327-331. doi:10.1126/science.aaa0940
  79. Planquette H, Sherrell RM, Stammerjohn S, Field MP (2013) Particulate iron delivery to the water column of the Amundsen Sea, Antarctica. Mar Chem 153:15-30. doi:10.1016/j.marchem.2013.04.006
  80. Pritchard HD, Ligtenberg SR, Fricker HA, Vaughan DG, van den Broeke MR, Padman L (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484(7395):502-505. doi:10.1038/nature10968
  81. Purkey SG, Johnson GC (2013) Antarctic bottom water warming and freshening: contributions to sea level rise, ocean freshwater budgets, and global heat gain. J Clim 26(16): 6105-6122. doi:10.1175/jcli-d-12-00834.1
  82. Reese R, Gudmundsson GH, Levermann A, Winkelmann R (2018) The far reach of ice-shelf thinning in Antarctica. Nat Clim Change 8(1):53-57. doi:10.1038/s41558-017-0020-x
  83. Rignot E, Bamber JL, van den Broeke MR, Davis C, Li Y, Jan ven de Berg W, Van Meijgaard E(2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat Geosci 1(2):106-110. doi:10.1038/ngeo102
  84. Rignot E, Jacobs S, Mouginot J, Scheuchl B (2013) Ice-shelf melting around Antarctica. Science 341(6143):266-270. doi:10.1126/science.1235798
  85. Rignot E, Mouginot J, Morlighem M, Seroussi H, Scheuchl B (2014) Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys Res Lett 41(10):3502-3509. doi:10.1002/2014gl060140
  86. Rignot E, Mouginot J, Scheuchl B, van den Broeke M, van Wessem MJ, Morlighem M (2019) Four decades of Antarctic ice sheet mass balance from 1979-2017. Proc Natl Acad Sci USA 116(4):1095-1103. doi:10.1073/pnas.1812883116
  87. Robinson NJ, Williams MJM, Stevens CL, Langhorne PJ, Haskell TG (2014) Evolution of a supercooled ice shelf water plume with an actively growing subice platelet matrix. J Geophys Res-Oceans 119(6):3425-3446. doi:10.1002/2013jc009399
  88. Scambos TA, Bell RE, Alley RB, Anandakrishnan S, Bromwich DH, Brunt K, Christianson K, Creyts T, Das SB, DeConto R, Dutrieux P, Fricker HA, Hollan d D, MacGregor J, Medley B, Nicolas JP, Pollard D, Siegfried MR, Smith AM, Steig EJ, Trusel LD, Vaughan DG, Yager PL (2017) How much, how fast?: a science review and outlook for research on the instability of Antarctica's Thwaites Glacier in the 21st century. Glob Planet Change 153:16-34. doi:10.1016/j.gloplacha.2017.04.008
  89. Schmidt BE, Washam P, Davis PED, Nicholls KW, Holland DM, Lawrence JD, Riverman KL, Simth JA, Spears A, Dichek DJG, Mullen AD, Clyne E, Yeager B, Anker P, Meister MR, Hurwitz BC, Quartin i ES, Bryson FE, Basinski A, Thomas C, Wake J, Vaughan DG, Anandakrishnan S, Rignot E, Paden J, Makinson K (2023) Heterogeneous melting near the Thwaites Glacier grounding line. Nature 614(7948):471-478. doi:10.1038/s41586-022-05691-0
  90. Schmidtko S, Heywood KJ, Thompson AF, Aoki S (2014) Multidecadal warming of Antarctic waters. Science 346 (6214):1227-1231. doi:10.1126/science.1256117
  91. Schodlok MP, Menemenlis D, Rignot E, Studinger M (2017) Sensitivity of the ice-shelf/ocean system to the sub-ice-shelf cavity shape measured by NASA IceBridge in Pine Island Glacier, West Antarctica. Ann Glaciol 53(60):156-162. doi:10.3189/2012AoG60A073
  92. Schroeder DM, Blankenship DD, Young DA (2013) Evidence for a water system transition beneath Thwaites Glacier, West Antarctica. Proc Natl Acad Sci USA 110(30):12225-12228. doi:10.1073/pnas.1302828110
  93. Shepherd A, Ivins ER, Geruo A, Barletta VR, Bentley MJ, Bettadpur S, Briggs KH, Bromwich DH, Forsberg R, Galin N, Horwath M, Jacobs S, Joughin I, King MA, Lenaerts JTM, Li J, Ligtenberg SRM, Luckman A, Luthcke SB, McMillan M, Meister R, Milne G, Mouginot J, Muir A, Nicolas JP, Paden J, Payn e AJ, Pritchard H, Rignot E, Rott H, Sorensen LS, Scambos TA, Scheuchl B, Schrama EJO, Smith B, Sundal AV, van Angelen JH, can de Berg WJ, van den Broeke MR, Vaughan DG, Velicogna I, Wahr J, Whitehouse PL, Wingham DJ, Yi D, Young D, Zwally HJ (2012) A reconciled estimate of ice-sheet mass balance. Science 338(6114):1539-1539 https://doi.org/10.1126/science.1228102
  94. Silvano A, Foppert A, Rintoul SR, Holland PR, Tamura T, Kimura N, Castagno P, Falco P, Budillon G, Haumann FA, Garabato A, Macdonald AM (2020) Recent recovery of Antarctic Bottom Water formation in the Ross Sea driven by climate anomalies. Nat Geosci 13(12):780-786. doi:10.1038/s41561-020-00655-3
  95. Silvano A, Rintoul SR, Pena-Molino B, Hobbs, WR, van Wijk E, Aoki S, Tamura T, Williams GD (2018) Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water. Sci Adv 4(4). doi:10.1126/sciadv.aap9467
  96. Smith B, Fricker HA, Gardner AS, Medley B, Nilsson J, Paolo FS, Holschuh N, Adusumilli S, Brunt K, Castho B, Harbeck K, Markus T, Neumann T, Siegfried MR, Zwally HJ (2020) Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 368(6496):1239-1242. doi:10.1126/science.aaz5845
  97. St-Laurent P, Klinck JM, Dinniman MS (2013) On the role of coastal troughs in the circulation of warm circumpolar deep water on Antarctic shelves. J Phys Oceanogr 43:51-64. doi:10.1175/JPO-D-11-0237.1
  98. St-Laurent P, Klinck JM, Dinniman MS (2015) Impact of local winter cooling on the melt of Pine Island Glacier, An tarctica. J Geophys Res-Ocean s 120(10):6718-6732. doi:10.1002/2015jc010709
  99. Talley LD, Pickard GL, Emery WJ, Swift JH (2011) Descriptive physical oceanography. Elsevier, London, 543 p
  100. Thoma M, Jenkins A, Holland D, Jacobs S (2008) Modelling Circumpolar Deep Water intrusions on the Amundsen Sea Continental Shelf, Antarctica. Geophys Res Lett 35(18): L18602. doi:10.1029/2008gl034939
  101. Thomas G, Purkey SG, Roemmich D, Foppert A, Rintoul SR (2020) Spatial variability of Antarctic Bottom Water in the Australian Antarctic Basin from 2018-2020 captured by deep Argo. Geophys Res Lett 47(23):L089467. doi: 10.1029/2020gl089467
  102. Thurnherr AM, Jacobs SS, Dutrieux P, Giulivi CF (2014) Export and circulation of ice cavity water in Pine Island Bay, West Antarctica. J Geophys Res-Oceans 119(3): 1754-1764. doi:10.1002/2013jc009307
  103. Wahlin AK, Graham AGC, Hogan KA, Queste BY, Boehme L, Larter RD, Pettit EC, Wellner J, Heywood KJ (2021) Pathways and modification of warm water flowing beneath Thwaites Ice Shelf, West Antarctica. Sci Adv 7(15). doi: 10.1126/sciadv.abd7254
  104. Wahlin AK, Kalen O, Arneborg L, Bjork G, Carvajal GK, Ha HK, Kim TW, Lee SH, Lee JH, Stranne C (2013) Variability of warm deep water inflow in a submarine trough on the Amundsen Sea shelf. J Phys Oceanogr 43(10):2054-2070. doi:10.1175/jpo-d-12-0157.1
  105. Wahlin AK, Muench RD, Arneborg L, Bjork G, Ha HK, Lee SH, Alsen H (2012) Some implications of Ekman layer dynamics for cross-shelf exchange in the Amundsen Sea. J Phys Oceanogr 42(9):1461-1474. doi:10.1175/jpo-d-11-041.1
  106. Wahlin AK, Steiger N, Darelius E, Assmann KM, Glessmer MS, Ha HK, Borreguero L, Heuze C, Jenkins A, Mazur AK, Sommeria J, Viboud S (2020) Ice front blocking of ocean heat transport to an Antarctic ice shelf. Nature 578(7796):568-571. doi:10.1038/s41586-020-2014-5
  107. Wahlin AK, Yuan X, Bjork G, Nohr C (2010) Inflow of warm Circumpolar Deep Water in the central Amundsen shelf. J Phys Oceanogr 40(6):1427-1434. doi:10.1175/2010jpo4431.1
  108. Walker DP, Brandon MA, Jenkins A, Allen JT, Dowdeswell JA, Evans J (2007) Oceanic heat transport onto the Amundsen Sea shelf through a submarine glacial trough. Geophys Res Lett 34(2). doi:10.1029/2006gl028154
  109. Walker DP, Jenkins A, Assmann KM, Shoosmith DR, Brandon MA (2013) Oceanographic observations at the shelf break of the Amundsen Sea, Antarctica. J Geophys Res-Ocean 118(6):2906-2918. doi:10.1002/jgrc.20212
  110. Webber BG, Heywood KJ, Stevens DP, Dutrieux P, Abrahamsen EP, Jenkins A, Jacobs SS, Ha HK, Lee SH, Kim TW (2017) Mechanisms driving variability in the ocean forcing of Pine Island Glacier. Nat Commun 8:14507. doi:10.1038/ncomms14507
  111. Webber BGM, Heywood KJ, Stevens DP, Assmann KM (2019) The impact of overturning and horizontal circulation in Pine Island trough on ice shelf melt in the Eastern Amundsen Sea. J Phys Oceanogr 49(1):63-83. doi:10.1175/jpo-d-17-0213.1
  112. Wei W, Blankenship DD, Greenbaum JS, Gourmelen N, Dow CF, Richter TG, Greene CA, Young DA, Lee SH, Kim TW, Lee WS, Assmann KM (2020) Getz Ice Shelf melt enhanced by freshwater discharge from beneath the West Antarctic Ice Sheet. Cryosphere 14(4):1399-1408. doi:10.5194/tc-14-1399-2020
  113. Whitworth T III, Orsi AH, Kim SJ, Nowlin Jr WD (1998) Water masses and mixing near the Antarctic slope front, in ocean, ice and atmosphere: interactions at the Antarctic continental margin, American Geophysical Union, Washington DC, 27 p
  114. Yang HW, Kim TW, Dutrieux P, Wahlin AK, Jenkins A, Ha HK, Kim CS, Cho KH, Park T, Lee SH, Cho YK (2022) Seasonal variability of ocean circulation near the Dotson Ice Shelf, Antarctica. Nat Commun 13(1):1138. doi:10.1038/s41467-022-28751-5
  115. Yoon ST, Lee WS, Nam S, Lee CK, Yun S, Heywood K, Boehme L, Zheng Y, Lee I, Choi Y, Jenkins A, Jin EK, Larter R, Wellner J, Dutrieux P, Bradley AT (2022) Ice front retreat reconfigures meltwater-driven gyres modulating ocean heat delivery to an Antarctic ice shelf. Nat Commun 13(1):306. doi:10.1038/s41467-022-27968-8
  116. Yoon S-T, Lee WS, Stevens C, Jendersie S, Nam SH, Yun S, Hwang CY, Jang GI, Lee J (2020) Variability in highsalinity shelf water production in the Terra Nova Bay Polynya, Antarctica. Ocean Sci 16(2):373-388. doi:10.5194/os-16-373-2020
  117. Yu H, Rignot E, Seroussi H, Morlighem M, Choi Y (2019) Impact of iceberg calving on the retreat of Thwaites Glacier, West Antarctica over the next century with different calving laws and ocean thermal forcing. Geophys Res Lett 46(24):14539-14547. doi:10.1029/2019gl084066
  118. Zheng Y, Heywood KJ, Webber BGM, Stevens DP, Biddle LC, Boehme L, Loose B (2021) Winter seal-based observations reveal glacial meltwater surfacing in the Southeastern Amun dsen Sea. Commun Earth En viron 2(1):40. doi:10.1038/s43247-021-00111-z
  119. Zheng Y, Stevens DP, Heywood KJ, Webber BGM, Queste BY (2022) Reversal of ocean gyres near ice shelves in the Amundsen Sea caused by the interaction of sea ice and wind. Cryosphere 16(7):3005-3019. doi:10.5194/tc-16-3005-2022