DOI QR코드

DOI QR Code

Scarring the early-life microbiome: its potential life-long effects on human health and diseases

  • Hyunji Park (Department of Life Sciences, Pohang University of Science and Technology) ;
  • Na-Young Park (Department of Life Sciences, Pohang University of Science and Technology) ;
  • Ara Koh (Department of Life Sciences, Pohang University of Science and Technology)
  • Received : 2023.06.08
  • Accepted : 2023.08.14
  • Published : 2023.09.30

Abstract

The gut microbiome is widely recognized as a dynamic organ with a profound influence on human physiology and pathology. Extensive epidemiological and longitudinal cohort studies have provided compelling evidence that disruptions in the early-life microbiome can have long-lasting health implications. Various factors before, during, and after birth contribute to shaping the composition and function of the neonatal and infant microbiome. While these alterations can be partially restored over time, metabolic phenotypes may persist, necessitating research to identify the critical period for early intervention to achieve phenotypic recovery beyond microbiome composition. In this review, we provide current understanding of changes in the gut microbiota throughout life and the various factors affecting these changes. Specifically, we highlight the profound impact of early-life gut microbiota disruption on the development of diseases later in life and discuss perspectives on efforts to recover from such disruptions.

Keywords

Acknowledgement

This paper is supported by the Korean Fund for Regenerative Medicine (KFRM) grant funded by the Korean government (the Ministry of Science and ICT, the Ministry of Health & Welfare) (KFRM 22A0301L1), the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2023R1A2C1002876), and the Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (No. 2021R1A6C101A390). Additionally, this work is supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2021R1A6A3A01086599 to N.Y.P).

References

  1. Koh A and Backhed F (2020) From association to causality: the role of the gut microbiota and its functional products on host metabolism. Mol Cell 78, 584-596 https://doi.org/10.1016/j.molcel.2020.03.005
  2. Sarkar A, Yoo JY, Valeria Ozorio Dutra S, Morgan KH and Groer M (2021) The association between early-life gut microbiota and long-term health and diseases. J Clin Med 10, 459
  3. Pessa-Morikawa T, Husso A, Karkkainen O et al (2022) Maternal microbiota-derived metabolic profile in fetal murine intestine, brain and placenta. BMC Microbiol 22, 46
  4. Bogaert D, Van Beveren GJ, de Koff EM et al (2023) Mother-to-infant microbiota transmission and infant microbiota development across multiple body sites. Cell Host Microbe 31, 447-460 e446
  5. Bokulich NA, Chung J, Battaglia T et al (2016) Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med 8, 343ra82
  6. Cox LM, Yamanishi S, Sohn J et al (2014) Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158, 705-721 https://doi.org/10.1016/j.cell.2014.05.052
  7. Sender R, Fuchs S and Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14, e1002533
  8. Cao H, Xu M, Dong W et al (2017) Secondary bile acid-induced dysbiosis promotes intestinal carcinogenesis. Int J Cancer 140, 2545-2556 https://doi.org/10.1002/ijc.30643
  9. Ryu G, Kim H and Koh A (2021) Approaching precision medicine by tailoring the microbiota. Mamm Genome 32, 206-222 https://doi.org/10.1007/s00335-021-09859-3
  10. Chen Y, Zhou J and Wang L (2021) Role and mechanism of gut microbiota in human disease. Front Cell Infect Microbiol 11, 625913
  11. Zaneveld JR, McMinds R and Vega Thurber R (2017) Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat Microbiol 2, 17121
  12. Watanabe S, Kameoka S, Shinozaki NO et al (2021) A cross-sectional analysis from the Mykinso Cohort Study: establishing reference ranges for Japanese gut microbial indices. Biosci Microbiota Food Health 40, 123-134 https://doi.org/10.12938/bmfh.2020-038
  13. Ghosh TS, Das M, Jeffery IB and O'Toole PW (2020) Adjusting for age improves identification of gut microbiome alterations in multiple diseases. Elife 9, e50240
  14. Chen L, Wang D, Garmaeva S et al (2021) The long-term genetic stability and individual specificity of the human gut microbiome. Cell 184, 2302-2315 e2312
  15. Olsson LM, Boulund F, Nilsson S et al (2022) Dynamics of the normal gut microbiota: a longitudinal one-year population study in Sweden. Cell Host Microbe 30, 726-739 e723
  16. Vich Vila A, Imhann F, Collij V et al (2018) Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci Transl Med 10, eaap8914
  17. Bourdeau-Julien I, Castonguay-Paradis S, Rochefort G et al (2023) The diet rapidly and differentially affects the gut microbiota and host lipid mediators in a healthy population. Microbiome 11, 1-16 https://doi.org/10.1186/s40168-022-01406-9
  18. Fragiadakis GK, Smits SA, Sonnenburg ED et al (2019) Links between environment, diet, and the hunter-gatherer microbiome. Gut Microbes 10, 216-227 https://doi.org/10.1080/19490976.2018.1494103
  19. Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS and Sonnenburg JL (2016) Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212-215 https://doi.org/10.1038/nature16504
  20. Vangay P, Johnson AJ, Ward TL et al (2018) US immigration westernizes the human gut microbiome. Cell 175, 962-972 e910
  21. Lin R, Zhang Y, Chen L et al (2020) The effects of cigarettes and alcohol on intestinal microbiota in healthy men. J Microbiol 58, 926-937 https://doi.org/10.1007/s12275-020-0006-7
  22. Wegierska AE, Charitos IA, Topi S, Potenza MA, Montagnani M and Santacroce L (2022) The connection between physical exercise and gut microbiota: implications for competitive sports athletes. Sports Med 52, 2355-2369 https://doi.org/10.1007/s40279-022-01696-x
  23. Kwon HJ, Lim JH, Kang D, Lim S, Park SJ and Kim JH (2019) Is stool frequency associated with the richness and community composition of gut microbiota? Intest Res 17, 419-426 https://doi.org/10.5217/ir.2018.00149
  24. Weersma RK, Zhernakova A and Fu J (2020) Interaction between drugs and the gut microbiome. Gut 69, 1510-1519 https://doi.org/10.1136/gutjnl-2019-320204
  25. Maier L, Pruteanu M, Kuhn M et al (2018) Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623-628 https://doi.org/10.1038/nature25979
  26. Forslund K, Hildebrand F, Nielsen T et al (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262-266 https://doi.org/10.1038/nature15766
  27. Wu H, Esteve E, Tremaroli V et al (2017) Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 23, 850-858 https://doi.org/10.1038/nm.4345
  28. Kim J, Lee H, An J et al (2019) Alterations in gut microbiota by statin therapy and possible intermediate effects on hyperglycemia and hyperlipidemia. Front Microbiol 10, 1947
  29. Yang T, Aquino V, Lobaton GO et al (2019) Sustained captopril-induced reduction in blood pressure is associated with alterations in gut-brain axis in the spontaneously hypertensive rat. J Am Heart Assoc 8, e010721
  30. Haiser HJ, Seim KL, Balskus EP and Turnbaugh PJ (2014) Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics. Gut Microbes 5, 233-238 https://doi.org/10.4161/gmic.27915
  31. Wan Y and Zuo T (2022) Interplays between drugs and the gut microbiome. Gastroenterol Rep (Oxf) 10, goac009
  32. Maini Rekdal V, Bess EN, Bisanz JE, Turnbaugh PJ and Balskus EP (2019) Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science 364, eaau6323
  33. Anthony WE, Wang B, Sukhum KV et al (2022) Acute and persistent effects of commonly used antibiotics on the gut microbiome and resistome in healthy adults. Cell Rep 39, 110649
  34. Patangia DV, Anthony Ryan C, Dempsey E, Paul Ross R and Stanton C (2022) Impact of antibiotics on the human microbiome and consequences for host health. Microbiologyopen 11, e1260
  35. Bonine NG, Berger A, Altincatal A et al (2019) Impact of delayed appropriate antibiotic therapy on patient outcomes by antibiotic resistance status from serious gram-negative bacterial infections. Am J Med Sci 357, 103-110 https://doi.org/10.1016/j.amjms.2018.11.009
  36. Leong KS, Derraik JG, Hofman PL and Cutfield WS (2018) Antibiotics, gut microbiome and obesity. Clin Endocrinol 88, 185-200 https://doi.org/10.1111/cen.13495
  37. Feng J, Li B, Jiang X et al (2018) Antibiotic resistome in a large-scale healthy human gut microbiota deciphered by metagenomic and network analyses. Environ Microbiol 20, 355-368 https://doi.org/10.1111/1462-2920.14009
  38. Cubillos-Ruiz A, Alcantar MA, Donghia NM, Cardenas P, Avila-Pacheco J and Collins JJ (2022) An engineered live biotherapeutic for the prevention of antibiotic-induced dysbiosis. Nat Biomed Eng 6, 910-921 https://doi.org/10.1038/s41551-022-00871-9
  39. Lahiri K, Jadhav K, Gahlowt P, Najmuddin F and Padmashree Y (2015) Bacillus Clausii as an adjuvant therapy in acute childhood Diarrhoea. IOSR-JDMS 14, 74-76
  40. Drekonja D, Reich J, Gezahegn S et al (2015) Fecal microbiota transplantation for Clostridium difficile infection: a systematic review. Ann Intern Med 162, 630-638 https://doi.org/10.7326/M14-2693
  41. Mullard A (2023) FDA approves second microbiome-based C. difficile therapy. Nat Rev Drug Discov 6, 436
  42. Nelson CA, Bhutta ZA, Harris NB, Danese A and Samara M (2020) Adversity in childhood is linked to mental and physical health throughout life. BMJ 371, m3048
  43. Milliken S, Allen RM and Lamont RF (2019) The role of antimicrobial treatment during pregnancy on the neonatal gut microbiome and the development of atopy, asthma, allergy and obesity in childhood. Expert Opin Drug Saf 18, 173-185 https://doi.org/10.1080/14740338.2019.1579795
  44. Leclercq S, Mian FM, Stanisz AM et al (2017) Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat Commun 8, 15062
  45. Russell SL, Gold MJ, Hartmann M et al (2012) Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep 13, 440-447 https://doi.org/10.1038/embor.2012.32
  46. Madany AM, Hughes HK and Ashwood P (2022) Prenatal maternal antibiotics treatment alters the gut microbiota and immune function of post-weaned prepubescent offspring. Int J Mol Sci 23, 12879
  47. Jess T, Morgen CS, Harpsoe MC et al (2019) Antibiotic use during pregnancy and childhood overweight: a population-based nationwide cohort study. Sci Rep 9, 11528
  48. Zou Z, Liu W, Huang C, Sun C and Zhang J (2020) First-year antibiotics exposure in relation to childhood asthma, allergies, and airway illnesses. Int J Environ Res Public Health 17, 5700
  49. Li P, Chang X, Chen X et al (2022) Early-life antibiotic exposure increases the risk of childhood overweight and obesity in relation to dysbiosis of gut microbiota: a birth cohort study. Ann Clin Microbiol Antimicrob 21, 1-14 https://doi.org/10.1186/s12941-022-00492-9
  50. Lynn MA, Eden G, Ryan FJ et al (2021) The composition of the gut microbiota following early-life antibiotic exposure affects host health and longevity in later life. Cell Rep 36, 109564
  51. Nobel YR, Cox LM, Kirigin FF et al (2015) Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment. Nat commun 6, 7486
  52. Greenwood C, Morrow AL, Lagomarcino AJ et al (2014) Early empiric antibiotic use in preterm infants is associated with lower bacterial diversity and higher relative abundance of Enterobacter. J Pediatr 165, 23-29 https://doi.org/10.1016/j.jpeds.2014.01.010
  53. Galla S, Chakraborty S, Cheng X et al (2020) Exposure to amoxicillin in early life is associated with changes in gut microbiota and reduction in blood pressure: findings from a study on rat dams and offspring. J Am Heart Assoc 9, e014373
  54. Raju TN (2013) Moderately preterm, late preterm and early term infants: research needs. Clin Perinatol 40, 791-797 https://doi.org/10.1016/j.clp.2013.07.010
  55. Vandenplas Y, Carnielli V, Ksiazyk J et al (2020) Factors affecting early-life intestinal microbiota development. Nutrition 78, 110812
  56. Zou J, Ngo VL, Wang Y, Wang Y and Gewirtz AT (2023) Maternal fiber deprivation alters microbiota in offspring, resulting in low-grade inflammation and predisposition to obesity. Cell Host Microbe 31, 45-57 e47
  57. Li HB, Yang T, Richards EM, Pepine CJ and Raizada MK (2020) Maternal treatment with captopril persistently alters gut-brain communication and attenuates hypertension of male offspring. Hypertension 75, 1315-1324 https://doi.org/10.1161/HYPERTENSIONAHA.120.14736
  58. Van den Bergh BR, van den Heuvel MI, Lahti M et al (2020) Prenatal developmental origins of behavior and mental health: the influence of maternal stress in pregnancy. Neurosci Biobehav Rev 117, 26-64 https://doi.org/10.1016/j.neubiorev.2017.07.003
  59. Browne HP, Shao Y and Lawley TD (2022) Mother-infant transmission of human microbiota. Curr Opin 69, 102173
  60. Ferretti P, Pasolli E, Tett A et al (2018) Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133-145 e135
  61. Collado MC, Laitinen K, Salminen S and Isolauri E (2012) Maternal weight and excessive weight gain during pregnancy modify the immunomodulatory potential of breast milk. Pediatr Res 72, 77-85 https://doi.org/10.1038/pr.2012.42
  62. Tun HM, Bridgman SL, Chari R et al (2018) Roles of birth mode and infant gut microbiota in intergenerational transmission of overweight and obesity from mother to offspring. JAMA Pediatr 172, 368-377 https://doi.org/10.1001/jamapediatrics.2017.5535
  63. Jasarevic E, Howard CD, Misic AM, Beiting DP and Bale TL (2017) Stress during pregnancy alters temporal and spatial dynamics of the maternal and offspring microbiome in a sex-specific manner. Sci Rep 7, 1-13 https://doi.org/10.1038/s41598-016-0028-x
  64. Rodriguez N, Tun HM, Field CJ, Mandhane PJ, Scott JA and Kozyrskyj AL (2021) Prenatal depression, breastfeeding, and infant gut microbiota. Front Microbiol 12, 664257
  65. Galley JD, Mashburn-Warren L, Blalock LC et al (2023) Maternal anxiety, depression and stress affects offspring gut microbiome diversity and bifidobacterial abundances. Brain Behav Immun 107, 253-264 https://doi.org/10.1016/j.bbi.2022.10.005
  66. Graham AM, Rasmussen JM, Rudolph MD et al (2018) Maternal systemic interleukin-6 during pregnancy is associated with newborn amygdala phenotypes and subsequent behavior at 2 years of age. Biol Psychiatry 83, 109-119 https://doi.org/10.1016/j.biopsych.2017.05.027
  67. Northrup TF, Stotts AL, Suchting R et al (2021) Third-hand smoke associations with the gut microbiomes of infants admitted to a neonatal intensive care unit: an observational study. Environ Res 197, 111180
  68. McLean C, Jun S and Kozyrskyj A (2019) Impact of maternal smoking on the infant gut microbiota and its association with child overweight: a scoping review. World J Clin Pediatr 15, 341-349 https://doi.org/10.1007/s12519-019-00278-8
  69. Palmer C, Bik EM, DiGiulio DB, Relman DA and Brown PO (2007) Development of the human infant intestinal microbiota. PLoS Biol 5, e177
  70. Beck S, Wojdyla D, Say L et al (2010) The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull World Health Organ 88, 31-38 https://doi.org/10.2471/BLT.08.062554
  71. Jia Q, Yu X, Chang Y et al (2022) Dynamic changes of the gut microbiota in preterm infants with different gestational age. Front Microbiol 13, 2259
  72. Moles L, Gomez M, Heilig H et al (2013) Bacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during the first month of life. PloS One 8, e66986
  73. Gomez M, Moles L, Espinosa-Martos I et al (2017) Bacteriological and immunological profiling of meconium and fecal samples from preterm infants: a two-year follow-up study. Nutrients 9, 1293
  74. Forsgren M, Isolauri E, Salminen S and Rautava S (2017) Late preterm birth has direct and indirect effects on infant gut microbiota development during the first six months of life. Acta Paediatr 106, 1103-1109 https://doi.org/10.1111/apa.13837
  75. Feehily C, Crosby D, Walsh CJ et al (2020) Shotgun sequencing of the vaginal microbiome reveals both a species and functional potential signature of preterm birth. NPJ Biofilms Microbiomes 6, 50
  76. Stewart CJ, Marrs EC, Nelson A et al (2013) Development of the preterm gut microbiome in twins at risk of necrotising enterocolitis and sepsis. PloS One 8, e73465
  77. Mai V, Torrazza RM, Ukhanova M et al (2013) Distortions in development of intestinal microbiota associated with late onset sepsis in preterm infants. PloS One 8, e52876
  78. Backhed F, Roswall J, Peng Y et al (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690-703 https://doi.org/10.1016/j.chom.2015.04.004
  79. Arboleya S, Binetti A, Salazar N et al (2012) Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiol Ecol 79, 763-772 https://doi.org/10.1111/j.1574-6941.2011.01261.x
  80. Liu J, Li Y, Feng Y et al (2019) Patterned progression of gut microbiota associated with necrotizing enterocolitis and late onset sepsis in preterm infants: a prospective study in a Chinese neonatal intensive care unit. PeerJ 7, e7310
  81. Ho TT, Groer MW, Kane B et al (2018) Dichotomous development of the gut microbiome in preterm infants. Microbiome 6, 1-13 https://doi.org/10.1186/s40168-017-0383-2
  82. Korpela K, Blakstad EW, Moltu SJ et al (2018) Intestinal microbiota development and gestational age in preterm neonates. Sci Rep 8, 2453
  83. Henderickx JG, Zwittink RD, Van Lingen RA, Knol J and Belzer C (2019) The preterm gut microbiota: an inconspicuous challenge in nutritional neonatal care. Front Cell Infect Microbiol 9, 85
  84. Korpela K (2021) Impact of delivery mode on infant gut microbiota. Ann Nutr Metab 77, 11-19 https://doi.org/10.1159/000518498
  85. Stokholm J, Blaser MJ, Thorsen J et al (2018) Maturation of the gut microbiome and risk of asthma in childhood. Nat commun 9, 141
  86. Stewart C, Marrs E, Magorrian S et al (2012) The preterm gut microbiota: changes associated with necrotizing enterocolitis and infection. Acta Paediatr 101, 1121-1127 https://doi.org/10.1111/j.1651-2227.2012.02801.x
  87. Beghetti I, Barone M, Turroni S et al (2022) Early-life gut microbiota and neurodevelopment in preterm infants: any role for Bifidobacterium? Eur J Pediatr 181, 1773-1777 https://doi.org/10.1007/s00431-021-04327-1
  88. Hiltunen H, Hanani H, Luoto R et al (2021) Preterm infant meconium microbiota transplant induces growth failure, inflammatory activation, and metabolic disturbances in germ-free mice. Cell Rep Med 2, 100447
  89. Shaterian N, Abdi F, Ghavidel N and Alidost F (2021) Role of cesarean section in the development of neonatal gut microbiota: a systematic review. Open Med 16, 624-639 https://doi.org/10.1515/med-2021-0270
  90. Mitchell CM, Mazzoni C, Hogstrom L et al (2020) Delivery mode affects stability of early infant gut microbiota. Cell Rep Med 1, 100156
  91. Roswall J, Olsson LM, Kovatcheva-Datchary P et al (2021) Developmental trajectory of the healthy human gut microbiota during the first 5 years of life. Cell Host Microbe 29, 765-776 e763
  92. Stewart CJ, Embleton ND, Clements E et al (2017) Cesarean or vaginal birth does not impact the longitudinal development of the gut microbiome in a cohort of exclusively preterm infants. Front Microbiol 8, 1008
  93. Eidelman AI, Schanler RJ, Johnston M et al (2012) Breastfeeding and the use of human milk. Pediatrics 129, e827-e841 https://doi.org/10.1542/peds.2011-3552
  94. Chong HY, Tan LTH, Law JWF et al (2022) Exploring the potential of human milk and formula milk on infants' gut and health. Nutrients 14, 3554
  95. Verduci E, Di Profio E, Cerrato L et al (2020) Use of soy-based formulas and cow's milk allergy: lights and shadows. Front Pediatr 8, 591988
  96. Fabiano V, Indrio F, Verduci E et al (2021) Term infant formulas influencing gut microbiota: an overview. Nutrients 13, 4200
  97. Huang J, Zhang Z, Wu Y et al (2018) Early feeding of larger volumes of formula milk is associated with greater body weight or overweight in later infancy. Nutr J 17, 12
  98. Parnanen KMM, Hultman J, Markkanen M et al (2022) Early-life formula feeding is associated with infant gut microbiota alterations and an increased antibiotic resistance load. Am J Clin Nutr 115, 407-421 https://doi.org/10.1093/ajcn/nqab353
  99. Martin CR, Ling PR and Blackburn GL (2016) Review of infant feeding: key features of breast milk and infant formula. Nutrients 8, 279
  100. Stewart CJ, Ajami NJ, O'Brien JL et al (2018) Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562, 583-588 https://doi.org/10.1038/s41586-018-0617-x
  101. Lugli GA, Mancabelli L, Milani C et al (2023) Comprehensive insights from composition to functional microbe-based biodiversity of the infant human gut microbiota. NPJ Biofilms Microbiomes 9, 25
  102. Cong X, Judge M, Xu W et al (2017) Influence of feeding type on gut microbiome development in hospitalized preterm infants. Nurs Res 66, 123-133 https://doi.org/10.1097/NNR.0000000000000208
  103. Galazzo G, van Best N, Bervoets L et al (2020) Development of the microbiota and associations with birth mode, diet, and atopic disorders in a longitudinal analysis of stool samples, collected from infancy through early childhood. Gastroenterology 158, 1584-1596 https://doi.org/10.1053/j.gastro.2020.01.024
  104. Korpela K, Helve O, Kolho KL et al (2020) Maternal fecal microbiota transplantation in cesarean-born infants rapidly restores normal gut microbial development: a proof-of-concept study. Cell 183, 324-334 e325
  105. Masi AC, Embleton ND, Lamb CA et al (2021) Human milk oligosaccharide DSLNT and gut microbiome in preterm infants predicts necrotising enterocolitis. Gut 70, 2273-2282 https://doi.org/10.1136/gutjnl-2020-322771
  106. Aceti A, Maggio L, Beghetti I et al (2017) Probiotics prevent late-onset sepsis in human milk-fed, very low birth weight preterm infants: systematic review and meta-analysis. Nutrients 9, 904
  107. Wilson BC, Butler EM, Grigg CP et al (2021) Oral administration of maternal vaginal microbes at birth to restore gut microbiome development in infants born by caesarean section: a pilot randomised placebo-controlled trial. EBioMedicine 69, 103443
  108. Dominguez-Bello MG, De Jesus-Laboy KM, Shen N et al (2016) Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med 22, 250-253 https://doi.org/10.1038/nm.4039
  109. Li X, Li X, Shang Q et al (2017) Fecal microbiota transplantation (FMT) could reverse the severity of experimental necrotizing enterocolitis (NEC) via oxidative stress modulation. Free Radic Biol Med 108, 32-43 https://doi.org/10.1016/j.freeradbiomed.2017.03.011
  110. Brunse A, Martin L, Rasmussen TS et al (2019) Effect of fecal microbiota transplantation route of administration on gut colonization and host response in preterm pigs. Isme j 13, 720-733 https://doi.org/10.1038/s41396-018-0301-z
  111. Hill C (2020) Balancing the risks and rewards of live biotherapeutics. Nat Rev Gastroenterol Hepatol 17, 133-134 https://doi.org/10.1038/s41575-019-0254-3
  112. Bibbo S, Settanni CR, Porcari S et al (2020) Fecal microbiota transplantation: screening and selection to choose the optimal donor. J Clin Med 9, 1757
  113. Chang CM, Tsai MH, Liao WC et al (2022) Effects of probiotics on gut microbiomes of extremely preterm infants in the neonatal intensive care unit: a prospective cohort study. Nutrients 14, 3239
  114. Beck LC, Masi AC, Young GR et al (2022) Strain-specific impacts of probiotics are a significant driver of gut microbiome development in very preterm infants. Nat Microbiol 7, 1525-1535 https://doi.org/10.1038/s41564-022-01213-w
  115. Stinson LF and Geddes DT (2022) Microbial metabolites: the next frontier in human milk. Trends Microbiol 30, 408-410 https://doi.org/10.1016/j.tim.2022.02.007
  116. Bering SB (2018) Human milk oligosaccharides to prevent gut dysfunction and necrotizing enterocolitis in preterm neonates. Nutrients 10, 1461
  117. Alliet P, Puccio G, Janssens E et al (2016) Term infant formula supplemented with human milk oligosaccharides (2'Fucosyllactose and Lacto-neotetraose) shifts stoom microbiota and metabolic signatures closer to that of the breastfed infant. J Pediatr Gastroenterol Nutr 63, S55
  118. Kostopoulos I, Elzinga J, Ottman N et al (2020) Akkermansia muciniphila uses human milk oligosaccharides to thrive in the early life conditions in vitro. Sci Rep 10, 14330
  119. Palleja A, Mikkelsen KH, Forslund SK et al (2018) Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat Microbiol 3, 1255-1265 https://doi.org/10.1038/s41564-018-0257-9
  120. Gasparrini AJ, Wang B, Sun X et al (2019) Persistent metagenomic signatures of early-life hospitalization and antibiotic treatment in the infant gut microbiota and resistome. Nat Microbiol 4, 2285-2297 https://doi.org/10.1038/s41564-019-0550-2
  121. Thanert R, Sawhney SS, Schwartz DJ and Dantas G (2022) The resistance within: antibiotic disruption of the gut microbiome and resistome dynamics in infancy. Cell Host Microbe 30, 675-683 https://doi.org/10.1016/j.chom.2022.03.013
  122. Dibo M, Ventimiglia MS, Valeff N, Serradell M and Jensen F (2022) An overview of the role of probiotics in pregnancy-associated pathologies with a special focus on preterm birth. J Reprod Immunol 150, 103493
  123. Hui Y, Smith B, Mortensen MS et al (2021) The effect of early probiotic exposure on the preterm infant gut microbiome development. Gut Microbes 13, 1951113
  124. Asbury MR, Shama S, Sa JY et al (2022) Human milk nutrient fortifiers alter the developing gastrointestinal microbiota of very-low-birth-weight infants. Cell Host Microbe 30, 1328-1339 e1325
  125. Park S, Belfoul AM, Rastelli M et al (2023) Maternal low-calorie sweeteners consumption rewires hypothalamic melanocortin circuits via a gut microbial co-metabolite pathway. JCI Insight 8, e156397
  126. Roager HM, Stanton C and Hall LJ (2023) Microbial metabolites as modulators of the infant gut microbiome and host-microbial interactions in early life. Gut Microbes 15, 2192151
  127. Paredes A, Justo-Mendez R, Jimenez-Blasco D et al (2023) γ-Linolenic acid in maternal milk drives cardiac metabolic maturation. Nature 618, 365-373 https://doi.org/10.1038/s41586-023-06068-7
  128. Liang L, Rasmussen MH, Piening B et al (2020) Metabolic dynamics and prediction of gestational age and time to delivery in pregnant women. Cell 181, 1680-1692 e1615