DOI QR코드

DOI QR Code

The Development of Wide-span Plastic Film Greenhouse for Strawberry Seedling Cultivation

딸기 육묘용 광폭 플라스틱 필름 온실 개발

  • Man Kwon Choi (Protected Horticulture Research Institute, NIHHS, RDA) ;
  • Myeong Whan Cho (Protected Horticulture Research Institute, NIHHS, RDA) ;
  • Hyun Ho Shin (Protected Horticulture Research Institute, NIHHS, RDA) ;
  • Ki Bum Kweon (Protected Horticulture Research Institute, NIHHS, RDA)
  • 최만권 (농촌진흥청 국립원예특작과학원 시설원예연구소 ) ;
  • 조명환 (농촌진흥청 국립원예특작과학원 시설원예연구소 ) ;
  • 신현호 (농촌진흥청 국립원예특작과학원 시설원예연구소 ) ;
  • 권기범 (농촌진흥청 국립원예특작과학원 시설원예연구소 )
  • Received : 2023.09.25
  • Accepted : 2023.10.26
  • Published : 2023.10.31

Abstract

This study aimed to develop an optimal greenhouse model for strawberry seedling during the summer high-temperature period based on the results of field surveys. We conducted a survey on the structure types of 46 strawberry seedling farms nationwide, including width, ridge height, eaves height, ventilation method, seedling bed width, and spacing. Based on the survey results, we derived the optimal greenhouse model by considering various factors. The greenhouse width was set at 14 meters to maximize the efficiency of seedling beds and overall space. The height was determined at 2 meters, taking into account ventilation during the summer season. To reduce stress on the supporting structure due to snow loads, we established a reinforcement installation angle of 50 degrees. We analyzed two different models that use support beams with dimensions of φ48.1×2.1t and φ59.9×3.2t, respectively, to ensure structural safety against meteorological disasters, considering regional design wind speeds and snow accumulation. We utilized these developed greenhouse model to conduct strawberry seedling experiments, resulting in a high survival rate of average 93.2%. These findings confirm the usefulness of the strawberry seedling greenhouse in improving the seedling environment and enhancing overall efficiency.

본 연구에서는 딸기 육묘용 온실의 개발을 통해 딸기 육묘에 적합한 규격과 생육환경을 조성하는 데 초점을 맞췄다. 이를 위해 전국의 46개 딸기 육묘 농가를 대상으로 구조실태 및 구조개선에 대한 조사를 실시하였다. 조사 결과를 토대로 다양한 요소를 고려하여 최적의 온실 모델을 도출하였다. 온실의 폭은 육묘 베드와 면적의 효율성을 고려하여 14.0m로 설정하였으며, 측고는 여름철 환기를 고려하여 2.0m로 결정하였다. 적설하중에 의한 서까래의 응력을 감소시키기 위해 보강재 설치 각도는 50°로 설정하였다. 지역별 설계 풍속과 적설심을 고려하여 안전성을 고려한 모델을 두 가지로 분석하였고, 결과적으로 φ48.1×2.1t와 φ59.9×2.3t의 서까래 부재를 사용한 온실 모델 모두 안전성을 확보하였다. 이렇게 개발한 온실 모델을 활용하여 딸기 육묘 실험을 진행하였고, 생존율이 평균 93.2%로 높게 나타났다. 이러한 결과로써 개발한 딸기 육묘용 온실이 딸기 육묘 환경을 개선하고 효율적인 생육을 도모할 수 있는 유용한 시설임을 확인하였다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 연구사업(세부과제번호: PJ01606302)의 지원에 의해 이루어진 것임.

References

  1. Kang D.I., H.K. Jeong, Y.G. Park, H.Wei. J. Hu, and B.R. Jeong 2019, Humidification and shading affect growth and development of cutting propagated 'Maehyang' strawberry (Fragaria × ananassa Duch.) at Propagation Stage. Protected Hort Plant Fac 28:429-437. (in Korean) doi:10.12791/ksbec.2019.28.4.429
  2. KDS 14 30 10 (2019), Korean steel structure design code (allowable stress design method). MOLIT. https://www.kcsc.re.kr/Search/ListCodes/101014. Accessed 27 October 2023
  3. Kim E.J., M.J. Uhm, H.S. Jung, J.Y. Kim, and J.G. Lee 2020, Determination of optimal collecting date and exogenous auxin dipping treatments in cutting transplants of 'Seolhyang' Strawberry (Fragaria × ananassa Duch.). Protected Hort Plant Fac 29:252-258. (in Korean) doi:10.12791/ksbec.2020.29.3.252.
  4. Kim S.H., D.G. Kim, J.T. Yoon, S.G. Choi, and J.T. Lee 2002, Primary inoculum of strawberry anthracnose in nursing field. Res Plant Dis 8:228-233. (in Korean) doi:10.5423/rpd.2002.8.4.228
  5. Lee H.W., and S.G. Lee 1995, Structural design of plastic greenhouses for prevention of meteorological disaster. Proceedings of Korean Society for Bio-Environment Control, pp 39-42. (in Korean)
  6. Lee J.W. 2013, Analysis of safety wind speed and snow depth for single-span plastic greenhouse according to growing crops. Curr Res Agric Life Sci 31:280-285. (in Korean). doi:10.14518/crals.2013.31.4.009
  7. Lee J.M., J.S Lim, J.G. Lee, C.W. Nam, K.D. Kim, E.H. Lee, and Y.R. Yeoung 2010, Influence of the differences in altitude during raising seedlings on daughter plant characteristics and subsequent strawberry production. Hortic Sci Technol 28:540-544. (in Korea)
  8. Ministry of agriculture, Food and Rural Affairs (MAFRA) 2022, The status of the greenhouse and production records for vegetable crops in 2021. MAFRA, Sejong, Korea, p 21. (in Korean)
  9. National Institute of Agricultural Sciences (NAS) 2015, Greenhouse structure design standard (draft). NAS, Wanju, Korea, pp 104-123. (in Korean)
  10. Park I.S., D.Y. Kim, H.S. Yoon, and J.M. Choi 2019, Influence of volumetric water content in a peat-perlite medium on mother plant growth and daughter plant occurrence during 'seolhyang' strawberry propagatio. Hortic Sci Technol 37:499-508. doi:10.7235/HORT.20190050
  11. Ryu H.R., I.H. Yu, M.W. Cho, and Y.C. Um 2009, Structural reinforcement methods and structural safety analysis for the elevated eaves height 1-2W type plastic greenhouse. J Bio-Env Con 18:192-199. (in Korean)
  12. Yu I. H, E.H. Lee, M.W. Cho, H.R. Ryu, and D.G. Moon 2014, Development of rain shelter for chinese cabbage rainproof cultivation. Protected Hort Plant Fac 23:293-302. (in Korean) doi:10.12791/KSBEC.2014.23.4.293
  13. Yu I.H, E.H Lee, M.W. Cho, H.R. Ryu, and D.G. Moon 2013, Development of single-span plastic greenhouses for hot pepper rainproof cultivation. Protected Hort Plant Fac 22:371-377. (in Korean). doi:10.12791/KSBEC.2013.22.4.371
  14. Yu I.H., E.H. Lee, M.W. Cho, H.R. Ryu, and Y.C. Kim 2012, Development of multi-span plastic greenhouse for tomato cultivation. J Bio-Env Con 21:428-436. (in Korean) https://doi.org/10.12791/KSBEC.2012.21.4.428