DOI QR코드

DOI QR Code

Changes in Growth and Antioxidant Phenolic Contents of Kale according to CO2 Concentration before UV-A Light Treatment

UV-A 조사 전 CO2 농도에 따른 케일의 생육과 항산화적 페놀릭 함량 변화

  • Jin-Hui Lee (Department of Practice Arts Education, Jeonju National University of Education) ;
  • Myung-Min Oh (Division of Animal, Horticultural, and Food Sciences, Chungbuk National University)
  • 이진희 (전주교육대학교 실과교육과) ;
  • 오명민 (충북대학교 축산.원예.식품공학부 원예학전공)
  • Received : 2023.10.12
  • Accepted : 2023.10.18
  • Published : 2023.10.31

Abstract

Ultra-violet (UV) light is one of abiotic stress factors and causes oxidative stress in plants, but a suitable level of UV radiation can be used to enhance the phytochemical content of plants. The accumulation of antioxidant phenolic compounds in UV-exposed plants may vary depending on the conditions of plant (species, cultivar, age, etc.) and UV (wavelength, energy, irradiation period, etc.). To date, however, little research has been conducted on how leaf thickness affects the pattern of phytochemical accumulation. In this study, we conducted an experiment to find out how the antioxidant phenolic content of kale (Brassica oleracea var. acephala) leaves with different thicknesses react to UV-A light. Kale seedlings were grown in a controlled growth chamber for four weeks under the following conditions: 20℃ temperature, 60% relative humidity, 12-hour photoperiod, light source (fluorescent lamp), and photosynthetic photon flux density of 121±10 µmol m-2 s-1. The kale plants were then transferred to two chambers with different CO2 concentrations (382±3.2 and 1,027±11.7 µmol mol-1), and grown for 10 days. After then, each group of kale plants were subjected to UV-A LED (275+285 nm at peak wavelength) light of 25.4 W m-2 for 5 days. As a result, when kale plants with thickened leaves from treatment with high CO2 were exposed to UV-A, they had lower UV sensitivity than thinner leaves. The Fv/Fm (maximum quantum yield on photosystem II) in the leaves of kale exposed to UV-A in a low-concentration CO2 environment decreased abruptly and significantly immediately after UV treatment, but not in kale leaves exposed to UV-A in a high-concentration CO2 environment. The accumulation pattern of total phenolic content, antioxidant capacity and individual phenolic compounds varied according to leaf thickness. In conclusion, this experiment suggests that the UV intensity should vary based on the leaf thickness (age etc.) during UV treatment for phytochemical enhancement.

Ultra-violet(UV)는 비생물학적 스트레스 요인 중 하나로 식물체 내 산화적인 스트레스를 유발하지만 적정한 수준의 UV조사는 식물체 내 항산화 파이토케미컬 함량을 증진시키는 도구가 될 수 있다. UV에 노출된 식물의 항산화적 페놀릭 물질 축적의 반응은 식물(종, 품종, 연령 등), UV(파장, 에너지, 조사 기간 등) 등에 따라 달라질 수 있다. 하지만 지금까지 잎 두께가 식물 생리활성 화합물의 축적 패턴에 어떻게 영향을 미치는지에 대한 연구는 거의 수행되지 않았다. 따라서, 본 실험에서는 잎 두께가 다른 케일(Brassica oleracea var. acephala)에 UV-A를 조사하였을 때, 항산화적 페놀릭 화합물의 축적 패턴이 어떻게 변화되는지 확인하고자 실험을 수행하였다. 케일 묘는 온도 20℃, 상대습도 60%, 광주기 12시간, 광원(fluorescent lamp), 광합성 유효 광량자속 밀도 PPFD 121 ±10µmol m-2 s-1 의 조건으로 제어되는 식물 생장상에서 4주간 재배되었다. 이후 CO2 농도가 서로 다룬 두 조건의 챔버(382±3.2 및 1027±11.7µmol mol-1)로 케일을 옮겨 10일간 재배하였고, 그 후 5일간 25.4W m-2의 UV-A LED(피크파장 275+285nm)를 광 주기 동안 보광 처리해 주었다. CO2 농도와 UV조사에 따른 식물의 생리 화학적인 변화를 확인하기 위해 생육 특성, 비엽중, 엽록소 형광, 총 페놀 함량과 항산화도, 그리고 개별적인 페놀 성분을 분석하였다. 결과적으로 고농도의 CO2 가 처리된 케일 잎의 두께가 유의적으로 증가했으며, 잎이 두꺼울수록 UV-A LED에 대한 스트레스의 정도가 낮았다. 저농도의 CO2 환경에서 UV-A에 노출된 케일의 잎의 Fv/Fm(제II광계 최대 광량자 수율)은 UV-A 처리 직후 급격히 감소되었지만, 고농도의 CO2환경에서 UV-A 처리는 큰 감소가 관찰되지 않았다. 또한, 총 페놀 함량, 항산화도 그리고 개별적인 페놀릭 화합물이 저농도 CO2 잎에서는 UV-A 처리 1일째, 고농도 CO2잎에서는 처리 3일째 증대되어 잎의 두께에 따라 화합물 축적 패턴이 다르게 나타남을 확인하였다. 결론적으로, 항산화적 페놀릭 화합물 축적을 위한 UV처리 시, 잎의 두께(잎의 발달 단계 등)를 고려해야하며 잎의 구조 형태적 특성에 따라 UV강도를 달리해야 함을 시사한다.

Keywords

Acknowledgement

본 결과물은 농림축산식품부 및 과학기술정보통신부, 농촌진흥청의 재원으로 농림식품기술기획평가원과 재단법인 스마트팜연구개발사업단의 스마트팜다부처패키지혁신기술개발사업의 지원을 받아 연구되었음(421033-04).

References

  1. Ainsworth E.A., and K.M. Gillespie 2007, Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc 2:875-877. doi:10.1038/nprot.2007.102
  2. Ainsworth E.A., and S.P. Long 2005, What have we learned from 15 years of free air-CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351-372. doi:10.1111/j.1469-8137.2004.01224.x
  3. Allakhverdiev S.I., V.D. Kreslavski, V.V. Klimov, D.A. Los, R. Carpentier, and P. Mohanty 2008, Heat stress: An overview of molecular responses in photosynthesis. Photosynth Res 98:541-550. doi:10.1007/s11120-008-9331-0
  4. Bahamonde H.A., I. Aranda, P.L. Peri, J. Gyenge, and V. Fernandez 2023, Leaf wettability, anatomy and ultra-structure of Nothofagus antarctica and N. betuloides grown under a CO2 enriched atmosphere. Plant Physiol Biochem 194:193-201. doi:10.1016/j.plaphy.2022.11.020
  5. Ballare C.L., M.M. Caldwell, S.D. Flint, S.A. Robinson, and J.F. Bornman 2011, Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochem Photobiol Sci 10:226-241. doi:10.1039/c0pp90035d
  6. Berli F.J., D. Moreno, P. Piccoli, L. Hespanhol-Viana, M.F. Silva, and R. Bressan-Smith 2010, Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols. Plant Cell Environ 33:1-10. doi:10.1111/j.1365-3040.2009.02044.x
  7. Bilger W., T. Johnsen, and U. Schreiber 2001, UV-excited chlorophyll fluorescence as a tool for the assessment of UV-protection by the epidermis of plants. J Exp Bot 52:2007-2014. doi:10.1093/jexbot/52.363.2007
  8. Bird S.M., and J.E. Gray 2003, Signals from the cuticle affect epidermal cell differentiation. New Phytol 157:9-23. doi:10.1046/j.1469-8137.2003.00543.x
  9. Brazaityte A., A. Virsile, J. Jankauskiene, S. Sakalauskiene, G. Samuoliene, R. Sirtautas, A. Novickovas, L. Dabasinskas, J. Miliauskiene, and V. Vastakaite 2015, Effect of supplemental UV-A irradiation in solid-state lighting on the growth and phytochemical content of microgreens. Int Agrophys 291:13-22. doi:10.1515/intag-2015-0004
  10. Brazaityte A., P. Duchovskis, A. Urbonaviciute, G. Samuoliene, J. Jankauskiene, and J. Sakalauskaite, G. Sabajeviene, R. Sirtautas, and A. Novickovas 2010, The effect of light-emitting diodes lighting on the growth of tomato transplants. Zemdirbyste 97:89-98.
  11. Caldwell C.R., and S.J. Britz 2006, Effect of supplemental ultraviolet radiation on the carotenoid and chlorophyll composition of green house-grown leaf lettuce (Lactuca sativa L.) cultivars. J Food Compos Anal 19:637-644. doi:10.1016/j.jfca.2005.12.016
  12. Caretto S., V. Linsalata, G. Colella, G. Mita, and V. Lattanzio 2015, Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress. Int J Mol Sci 16:26378-26394. doi:10.3390/ijms161125967
  13. Choi D.S., T.K.L. Nguyen, and M.M. Oh 2022, Growth and biochemical responses of kale to supplementary irradiation with different peak wavelengths of UV-A light-emitting diodes. Hortic Environ Biotechnol 63:65-76. doi:10.1007/s13580-021-00377-4
  14. Demimng B., and O. Bjorkman 1987, Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O2 evolution in leaves of higher plants. Planta 171:171-184 https://doi.org/10.1007/BF00391092
  15. Diffey B.L. 1991, Solar ultraviolet radiation effects on biological systems. Phys Med Biol 363:299. doi:10.1088/0031-9155/36/3/001
  16. Escobar-Bravo R., P.G. Klinkhamer, and K.A. Leiss 2017, Interactive effects of UV-B light with abiotic factors on plant growth and chemistry, and their consequences for defense against arthropod herbivores. Front Plant Sci 8:278. doi:10.3389/fpls.2017.00278
  17. Farquhar G.D., S. von Caemmerer, and J.A. Berry 1980, A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78-90. doi:10.1007/bf00386231
  18. Frohnmeyer H., and D. Staiger 2003, Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol 133:1420-1428. doi:10.1104/pp.103.030049
  19. Hoagland D.R., and D.I. Arnon 1950, The water-culture method for growing plants without soil. Calif Agric Exp Stat Circ 347:1-37.
  20. Johnson G.A., and T.A. Day 2002, Enhancement of photosynthesis in Sorghum bicolor by ultraviolet radiation. Physiol Plant 116:554-562. doi:10.1034/j.1399-3054.2002.1160415.x
  21. Kakani V.G., K.R. Reddy, D. Zhao, and A.R. Mohammed 2003, Effects of ultraviolet-B radiation on cotton (Gossypium hirsutum L.) morphology and anatomy. Ann Bot 91:817-826. doi:10.1093/aob/mcg086
  22. Krizek D.T. 2004, Influence of PAR and UV-A in determining plant sensitivity and photomorphogenic responses to UVB radiation. Photochem Photobiol 79:307-315. doi:10.1562/2004-01-27-ir.1
  23. Krizek D.T., and L. Chalker-Scott 2005, Ultraviolet radiation and terrestrial ecosystems. Photochem Photobiol 81:1021-6. doi:10.1562/2005-08-18-RA-654
  24. Krizek D.T., R.M. Mirecki, and S.J. Britz, 1997, Inhibitory effects of ambient levels of solar UV-A and UV-B radiation on growth of cucumber. Physiol Plant 100:886-893. doi:10.1111/j.1399-3054.1997.tb00014.x
  25. Lattanzio V., A. Cardinali, C. Ruta, I. Morone Fortunato, V.M.T. Lattanzio, V. Linsalata, and N. Cicco, 2009, Relationship of secondary metabolism to growth in oregano (Origanum vulgare L.) shoot cultures under nutritional stress. Environ Exp Bot 65:54-62. doi:10.1016/j.envexpbot.2008.09.002
  26. Lee J.H., M.M. Oh, and K.H. Son 2019, Short-term ultraviolet (UV)-A light-emitting diode (LED) radiation improves biomass and bioactive compounds of kale. Front Plant Sci 10:1042. doi:10.3389/fpls.2019.01042
  27. Long S.P., S. Humpries, and P.G. Falkowski 1994, Photoinhibition of phorosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633-662. doi:10.1146/annurev.pp.45.060194.003221
  28. Mantha S.V., G.A. Johnson, and T.A. Day 2001, Evidence from action and fluorescence spectra that UV-induced violet-blue-green fluorescence enhances leaf photosynthesis. Photochem Photobiol 73:249-256. doi:10.1562/0031-8655(2001)0730249EFAAFS2.0.CO2
  29. Maxwell K., and G.N. Johnson 2000, Chlorophyll fluorescence-a practical guide. J Exp Bot 51:659-668. doi:10.1093/jxb/51.345.659
  30. Miller N.J., and C.A. Rice-Evans 1996, Spectrophotometric determination of antioxidant activity. Redox Rep 2:161-171. doi:10.1080/13510002.1996.11747044
  31. Muller V., C. Lankes, A. Albert, J.B. Winkler, B.F. Zimmermann, G. Noga, and M. Hunsche 2015, Concentration of hinokinin, phenolic acids and flavonols in leaves and stems of Hydrocotyle leucocephala is differently influenced by PAR and ecologically relevant UV-B level. J Plant Physiol 173:105-115. doi:10.1016/j.jplph.2014.09.003
  32. Mumivand H., A. Shayganfar, G. Tsaniklidis, Z. Emami Bistgani, D. Fanourakis, and S. Nicola 2021, Pheno-morphological and essential oil composition responses to UVA radiation and protectants: A case study in three Thymus species. Hortic 8:31. doi:10.3390/horticulturae8010031
  33. Ofiti N.O., M. Altermatt, F. Petibon, J.M. Warren, A. Malhotra, P.J. Hanson, and G.L. Wiesenberg 2023, Warming and elevated CO2 induced shifts in carbon partitioning and lipid composition within an ombrotrophic bog plant community. Environ Exp Bot 206:105182. doi:10.1016/j.envexpbot.2022.105182
  34. Reekie E.G., G. MacDougall, I. Wong, and P.R. Hicklenton 1998, Effect of sink size on growth response to elevated atmospheric CO2 within the genus Brassica. Can J Bot 76:829-835. doi:10.1139/b98-056
  35. Schoedl K., R. Schuhmacher, and A. Forneck 2013, Correlating physiological parameters with biomarkers for UV-B stress indicators in leaves of grapevine cultivars Pinot noir and Riesling. J Agric Sci 151:189-200. doi:10.1017/s0021859612000536
  36. Schreiber L., M. Skrabs, K. Hartmann, P. Diamantopoulos, E. Simanova, and J. Santrucek 2001, Effect of humidity on cuticular water permeability of isolated cuticular membranes and leaf disks. Planta 214:274-282. doi:10.1007/s004250100615
  37. Scotti-Campos P., I.P. Pais, A.I. Ribeiro-Barros, L.D. Martins, M.A. Tomaz, W.P. Rodrigues, and J.C. Ramalho 2019, Lipid profile adjustments may contribute to warming acclimation and to heat impact mitigation by elevated [CO2] in Coffea spp. Environ Exp Bot 167:103856. doi:10.1016/j.envexpbot.2019.103856
  38. Sharma S., and K.N. Guruprasad 2012, Enhancement of root growth and nitrogen fixation in Trigonella by UV-exclusion from solar radiation. Plant Physiol Biochem 61:97-102. doi:10.1016/j.plaphy.2012.10.003
  39. Shayganfar A., M. Azizi, and M. Rasouli 2018, Various strategies elicited and modulated by elevated UV-B radiation and protectant compounds in Thymus species: Differences in response over treatments, acclimation and interaction. Ind Crops Prod 113:298-307. doi:10.1016/j.indcrop.2018.01.056
  40. Shirley B.W. 1996, Flavonoid biosynthesis: 'new' functions for an 'old' pathway, Trends Plant Sci 1:377-382. doi:10.1016/1360-1385(96)10040-6
  41. Stapleton A.E. 1992, Ultraviolet radiation and plants: burning questions. Plant Cell 4:1353. doi:10.2307/3869507
  42. Tsormpatsidis E., R.G.C. Henbest, F.J. Davis, N.H. Battey, P. Hadley, and A. Wagstaffe 2008, UV irradiance as a major influence on growth, development and secondary products of commercial importance in Lollo Rosso lettuce 'Revolution' grown under polyethylene films. Environ Exp Bot 631:232-239. doi:10.1016/j.envexpbot.2007.12.002
  43. Tyystjaervi E. 2008, Photoinhibition of Photosystem II and photodamage of the oxygen evolving manganese cluster. Coord Chem Rev 252:361-376. doi:10.1016/j.ccr.2007.08.021
  44. Verdaguer D., M.A. Jansen, L. Llorens, L.O. Morales, and S. Neugart 2017, UV-A radiation effects on higher plants: exploring the known unknown. Plant Sci 255:72-81. doi:10.1016/j.plantsci.2016.11.014
  45. Victorio C.P., M.V. Leal-Costa, E. Schwartz Tavares, R. Machado Kuster, and C.L. Salgueiro Lage 2011, Effects of supplemental UV-A on the development, anatomy and metabolite production of Phyllanthus tenellus cultured in vitro. Photochem Photobiol 87:685-689. doi:10.1111/j.1751-1097.2011.00905.x
  46. Vidovic M., F. Morina, S. Milic, A. Albert, B. Zechmann, T. Tosti, and S.V. Jovanovic 2015, Carbon allocation from source to sink leaf tissue in relation to flavonoid biosynthesis in variegated Pelargonium zonale under UV-B radiation and high PAR intensity. Plant Physiol Biochem 93:44-55. doi:10.1016/j.plaphy.2015.01.008
  47. Yoon H.I., D. Kim, and J.E. Son 2020, Spatial and temporal bioactive compound contents and chlorophyll fluorescence of kale (Brassica oleracea L.) under UV-B exposure near harvest time in controlled environments. Photochem Photobiol 96:845-852. https://doi.org/10.1111/php.13237