DOI QR코드

DOI QR Code

Analysis in Microstructures and Co Volume of WC Powder According to the Lifespan of WC-Co Molds for Cold Forging

냉간단조용 WC-Co 금형의 수명에 미치는 WC 분말의 미세구조 및 Co 부피 분율의 분석

  • Jeongseok Oh (Department of Materials Science and Engineering, Hanbat National University) ;
  • Jini Park (Department of Materials Science and Engineering, Hanbat National University) ;
  • Sang-yeob Lee (Department of Materials Science and Engineering, Hanbat National University) ;
  • Choong-Heui Chung (Department of Materials Science and Engineering, Hanbat National University) ;
  • Jeong-muk Choi (Jinhap Corp.) ;
  • Joon sik Park (Department of Materials Science and Engineering, Hanbat National University)
  • 오정석 (한밭대학교 신소재공학과) ;
  • 박지니 (한밭대학교 신소재공학과) ;
  • 이상엽 (한밭대학교 신소재공학과) ;
  • 정중희 (한밭대학교 신소재공학과) ;
  • 최정묵 ((주)진합) ;
  • 박준식 (한밭대학교 신소재공학과)
  • Received : 2023.08.30
  • Accepted : 2023.09.21
  • Published : 2023.09.30

Abstract

In this study, we analyzed two types of cold forging dies commonly used for manufacturing general nuts and screws to investigate the differences in WC powder according to the lifespan. For both Type I and Type II dies, it was observed that as the lifespan of the molds increases, the area fraction of Co becomes larger and the size of the powder becomes smaller. Moreover, there is a trend where the strength also increases as the lifespan gets longer. Actually, the hardness value of the sample with the longest lifespan is ~ 131 HV higher than the specimen of the shortest lifespan, It is noted that the reduction in toughness of the WC-Co mold is caused by insufficient Co and the decrease in contact surface area of WC-Co results in a reduced bonding surface area. The lifespan of cold-working WC molds increases when the W content and the volume fraction of WC are high, and the size of the WC powder is small. The results can significantly enhance producing high-quality molds with an extended lifespan using WC powder for cold forging.

Keywords

Acknowledgement

The authors gratefully acknowledge the extended support provided to this work by the Light Material National Strategy Project (10081334) funded by the Koera Evaluation Institute of Industrial Technology (KEIT), and "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE)(2021RIS-004).

References

  1. C. W. Chang: Procedia Engineering, 207 (2017) 502-507. https://doi.org/10.1016/j.proeng.2017.10.812
  2. M. Killmann: Procedia Structural Integrity, 38 (2022) 212-219. https://doi.org/10.1016/j.prostr.2022.03.022
  3. M. Killmann: CIRP Annals - Manufacturing Technology, 72 (2023) 241-244.
  4. A. R. Jo: Materials, 14 (2021) 532. https://doi.org/10.3390/ma14030532
  5. K. Lange: Journal of Materials Processing Technology, 35 (1992) 245-257. https://doi.org/10.1016/0924-0136(92)90321-I
  6. R. Ebara: Engineering Failure Analysis, 16 (2009) 1968-1976 https://doi.org/10.1016/j.engfailanal.2008.10.023
  7. Y. -C. Lee: Journal of Materials Processing Technology, 113 (2001) 539-543. https://doi.org/10.1016/S0924-0136(01)00720-8
  8. B. Tanrikulu: Engineering Failure Analysis, 118 (2020) 104910. https://doi.org/10.1016/j.engfailanal.2020.104910
  9. A. Samuel: International Journal of Refractory Metals and Hard Materials, 95 (2021) 105462 https://doi.org/10.1016/j.ijrmhm.2020.105462
  10. S. H. Ryu: Korean J. Met. Mater, 59 (2021) 201-208. https://doi.org/10.3365/KJMM.2021.59.3.201
  11. T. S. Srivatsan: Powder Technology, 122 (2002) 54-60. https://doi.org/10.1016/S0032-5910(01)00391-6
  12. A. Fayyaz: Journal of Materials Processing Technology, 214 (2014) 1436-1444. https://doi.org/10.1016/j.jmatprotec.2014.02.006
  13. A. M. Sankhla: Journal of Materials Research and Technology, 18 (2022) 282-292. https://doi.org/10.1016/j.jmrt.2022.02.094
  14. L. Wang: Journal of Materials Research and Technology, 20 (2022) 4409-4418. https://doi.org/10.1016/j.jmrt.2022.09.003
  15. R. Singh: Advanced Powder Technology, 33 (2022) 103724.
  16. B. Sa: International Journal of Refractory Metals and Hard Materials, 111 (2023) 106106. https://doi.org/10.1016/j.ijrmhm.2023.106106
  17. W. Luo: Intermetallics, 151 (2022) 107738. https://doi.org/10.1016/j.intermet.2022.107738
  18. V. I. Stanciu: International Journal of Refractory Metals and Hard Materials, 112 (2023) 106161. https://doi.org/10.1016/j.ijrmhm.2023.106161
  19. P. Pereira: International Journal of Refractory Metals and Hard Materials, 104 (2022) 105799. https://doi.org/10.1016/j.ijrmhm.2022.105799
  20. H. Dong: Journal of Materials Science & Technology, 97 (2022) 169-175.
  21. T. Soria-Biurrun: International Journal of Refractory Metals and Hard Materials, 103 (2022) 105748.
  22. EMen endez: Nanotechnology, 18 (2007) 185609.