DOI QR코드

DOI QR Code

Torrefaction for Improving Quality of Pellets Derived from Calliandra Wood

  • Received : 2023.06.26
  • Accepted : 2023.08.27
  • Published : 2023.09.25

Abstract

Densification is a technique used to improve biomass quality in wood pellet manufacturing and torrefaction treatment. In this study, the effects of torrefaction on the quality of Calliandra wood pellets were investigated, and pellets of Calliandra wood (Calliandra calothyrsus) and bark were evaluated. The study was conducted using a completely randomized design with two treatment factors, namely torrefaction temperature (250℃ and 300℃) and torrefaction duration (30, 45, and 60 min). The results showed that the interaction between temperature and torrefaction duration significantly affected the compressive strength, proximate value, and calorific value of the torrefied Calliandra wood pellets. An increase in the temperature and torrefaction duration decreased the compressive strength, moisture content, volatile matter content, and ash content of the torrefied Calliandra wood pellets. Conversely, the calorific value of Calliandra wood pellets increased with increasing temperature and torrefaction duration. The best-quality Calliandra wood pellets were produced at a torrefaction temperature and duration of 300℃ and 60 min, respectively. In terms of important quality parameters, ash content of 0.90% and calorific value of 6,303.80 cal/g were observed, which complied with the quality standards of Indonesian National Standard 8675:2018 and Deutsche Industrie Norm 51731.

Keywords

Acknowledgement

This research was conducted with the assistance of the Laboratory of Bioenergy and Biomaterial Conversion, of the Faculty of Forestry, Universitas Gadjah Mada, Yogyakarta, Indonesia.

References

  1. American Society for Testing and Materials [ASTM]. 2001. Standard Test Method for Single Pellet Crush Strength of Formed Catalyst Shapes. ASTM D4179-01. ASTM International, West Conshohocken, PA, USA.
  2. American Society for Testing and Materials [ASTM]. 2006. Standard Test Method for Chemical Analysis of Wood Charcoal. ASTM D1762-84. ASTM International, West Conshohocken, PA, USA.
  3. American Society for Testing and Materials [ASTM]. 2010. Standard Test Method for Gross Calorivic Value of Coal and Coke by the Adiabatic Bomb Calorimeter. ASTM D5865-10. ASTM International, West Conshohocken, PA, USA.
  4. Arias, B., Pevida, C., Fermoso, J., Plaza, M.G., Rubiera, F., Pis, J.J. 2008. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Processing Technology 89(2): 169-175. https://doi.org/10.1016/j.fuproc.2007.09.002
  5. Aytenew, G., NIgus, G., Bedewi, B. 2018. Improvement of the energy density of rice husk using dry and chemical treated torrefaction. Journal of Advanced Chemical Engineering 8(1): 1000185.
  6. Badan Standarisasi Nasional. 2018. Pelet Biomassa untuk Energi. SNI 8675:2018. Badan Standarisasi Nasional, Jakarta, Indonesia.
  7. Boonstra, M.J., Van Acker, J., Tjeerdsma, B.F., Kegel, E.V. 2007. Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Annals of Forest Science 64: 679-690. https://doi.org/10.1051/forest:2007048
  8. Bridgeman, T.G., Jones, J.M., Shield, I., Williams, P.T. 2008. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87(6): 844-856. https://doi.org/10.1016/j.fuel.2007.05.041
  9. Cahyani, N., Yunianti, A.D., Suhasman, Pangestu, K.T.P., Pari, G. 2023. Characteristics of bio pellets from spent coffee grounds and pinewood charcoal based on composition and grinding method. Journal of the Korean Wood Science and Technology 51(1): 23-37. https://doi.org/10.5658/WOOD.2023.51.1.23
  10. da Silva, C.M.S., de Cassia Oliveira Carneiro, A., Vital, B.R., Figueiro, C.G., de Freitas Fialho, L., de Magalhaes, M.A., Carvalho, A.G., Candido, W.L. 2018. Biomass torrefaction for energy purposes: Definitions and an overview of challenges and opportunities in Brazil. Renewable and Sustainable Energy Reviews 82(Part 3): 2426-2432. https://doi.org/10.1016/j.rser.2017.08.095
  11. Foong, S.Y., Liew, R.K., Yang, Y., Cheng, Y.W., Yek, P.N.Y., Mahari, W.A.W., Lee, X.Y., Han, C.S., Vo, D.V.N., Le, Q.V., Aghbashlo, M., Tabatabaei, M., Sonne, C., Peng, W., Lam, S.S. 2020. Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions. Chemical Engineering Journal 389: 124401.
  12. Ge, S., Foong, S.Y., Ma, N.L., Liew, R.K., Mahari, W.A.W., Xia, C., Yek, P.N.Y., Peng, W., Nam, W.L., Lim, X.Y., Liew, C.M., Chong, C.C., Sonne, C., Lam, S.S. 2020. Vacuum pyrolysis incorporating microwave heating and base mixture modification: An integrated approach to transform biowaste into eco-friendly bioenergy products. Renewable and Sustainable Energy Reviews 127: 109871.
  13. Hendrati, R.L., Hidayati, N. 2014. Budidaya Kaliandra (Calliandra calothyrsus) untuk Bahan Baku Sumber Energi. IPB Press, Bogor, Indonesia.
  14. Heo, S.J., Choi, J.W. 2018. Biofuel utilization and implications in ASEAN based on case analysis of developed countries. Journal of the Korean Wood Science and Technology 46(5): 577-596. https://doi.org/10.5658/WOOD.2018.46.5.577
  15. Hidayatullah, A.H. 2022. Evaluasi pengaruh kulit kayu pada kualitas pelet kaliandra (Calliandra calothyrsus) sebagai sumber energi terbarukan. M.S. Thesis, Universitas Gadjah Mada, Indonesia.
  16. Jang, E.S. 2022. Experimental investigation of the sound absorption capability of wood pellets as an eco- friendly material. Journal of the Korean Wood Science and Technology 50(2): 126-133. https://doi.org/10.5658/WOOD.2022.50.2.126
  17. Jeoung, T.Y., Yang, S.M., Kang, S.G. 2020. Study on fuel specificity and harmful air pollutants factor of agglomerated wood charcoal. Journal of the Korean Wood Science and Technology 48(2): 253-266. https://doi.org/10.5658/WOOD.2020.48.2.253
  18. Ju, Y.M., Lee, H.W., Kim, A., Jeong, H., Chea, K.S., Lee, J., Ahn, B.J., Lee, S.M. 2020. Characteristics of carbonized biomass produced in a manufacturing process of wood charcoal briquettes using an open hearth kiln. Journal of the Korean Wood Science and Technology 48(2): 181-195. https://doi.org/10.5658/WOOD.2020.48.2.181
  19. Lau, H.S., Ng, H.K., Gan, S., Jourabchi, S.A. 2018. Torrefaction of oil palm fronds for co-firing in coal power plants. Energy Procedia 144: 75-81. https://doi.org/10.1016/j.egypro.2018.06.010
  20. Lee, H.W., Kim, S.B. 2020. Study on the estimation of proper compression ratios for Korean domestic wood species by single pellet press. Journal of the Korean Wood Science and Technology 48(4): 450-457. https://doi.org/10.5658/WOOD.2020.48.4.450
  21. Lee, J., Ahn, B.J., Kim, E.J. 2015. Effects of the torrefaction process on the fuel characteristics Larix kaempferi C. Journal of the Korean Wood Science and Technology 43(2): 196-205. https://doi.org/10.5658/WOOD.2015.43.2.196
  22. Li, Y., Tittmann, P., Parker, N., Jenkins, B. 2017. Economic impact of combined torrefaction and pelletization processes on forestry biomass supply. GCB Bioenergy 9(4): 681-693. https://doi.org/10.1111/gcbb.12375
  23. Mannetje, L.T., Jones, R.M. 1992. Plant Resources of South-East Asia No. 4 Forages. Pudoc, Wageningen, Netherlands.
  24. Manouchehrinejad, M., Mani, S. 2018. Torrefaction after pelletization (TAP): Analysis of torrefied pellet quality and co-products. Biomass and Bioenergy 118: 93-104. https://doi.org/10.1016/j.biombioe.2018.08.015
  25. Matali, S., Rahman, N.A., Idris, S.S., Yaacob, N., Alias, A.B. 2016. Lignocellulosic biomass solid fuel properties enhancement via torrefaction. Procedia Engi- neering 148: 671-678. https://doi.org/10.1016/j.proeng.2016.06.550
  26. Mostafa, M.E., Hu, S., Wang, Y., Su, S., Hu, X., Elsayed, S.A., Xiang, J. 2019. The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets. Renewable and Sustainable Energy Reviews 105: 332-348. https://doi.org/10.1016/j.rser.2019.01.053
  27. Poddar, S., Kamruzzaman, M., Sujan, S.M.A., Hossain, M., Jamal, M.S., Gafur, M.A., Khanam, M. 2014. Effect of compression pressure on lignocellulosic biomass pellet to improve fuel properties: Higher heating value. Fuel 131: 43-48. https://doi.org/10.1016/j.fuel.2014.04.061
  28. Prins, M.J., Ptasinski, K.J., Janssen, F.J.J.G. 2006. More efficient biomass gasification via torrefaction. Energy 31(15): 3458-3470. https://doi.org/10.1016/j.energy.2006.03.008
  29. Shankar Tumuluru, J., Sokhansanj, S., Hess, J.R., Wright, C.T., Boardman, R.D. 2011. A review on biomass torrefaction process and product properties for energy applications. Industrial Biotechnology 7(5): 384-401. https://doi.org/10.1089/ind.2011.7.384
  30. Song, X., Yang, Y., Zhang, M., Zhang, K., Wang, D. 2018. Ultrasonic pelleting of torrefied lignocellulosic biomass for bioenergy production. Renewable Energy 129: 56-62. https://doi.org/10.1016/j.renene.2018.05.084
  31. Speight, J.G. 2015. Assessing Fuels for Gasification: Analytical and Quality Control Techniques for Coal. In: Gasification for Synthetic Fuel Production: Fundamentals, Processes and Applications, Ed. by Luque, R. and Speight, J.G. Woodhead, Sawston, UK.
  32. Stelte, W., Nielsen, N.P.K., Hansen, H.O., Dahl, J., Shang, L., Sanadi, A.R. 2013. Reprint of: Pelletizing properties of torrefied wheat straw. Biomass and Bioenergy 53: 105-112. https://doi.org/10.1016/j.biombioe.2013.03.012
  33. Yue, Y., Singh, H., Singh, B., Mani, S. 2017. Torrefaction of sorghum biomass to improve fuel properties. Bioresource Technology 232: 372-379. https://doi.org/10.1016/j.biortech.2017.02.060
  34. Zafar, M.W., Shahbaz, M., Hou, F., Sinha, A. 2019. From nonrenewable to renewable energy and its impact on economic growth: The role of research & development expenditures in Asia-Pacific Economic Cooperation countries. Journal of Cleaner Production 212: 1166-1178. https://doi.org/10.1016/j.jclepro.2018.12.081