DOI QR코드

DOI QR Code

Effect of 125 Hz and 150 Hz vibrational frequency electric toothbrushes on the rate of orthodontic tooth movement and prostaglandin E2 levels

  • Anadha N. Gujar (Department of Orthodontics, Sri Rajiv Gandhi College of Dental Sciences and Hospital) ;
  • Prashantha Govinakovi Shivamurthy (Department of Orthodontics, M S Ramaiah University of Applied Sciences)
  • Received : 2023.04.03
  • Accepted : 2023.08.13
  • Published : 2023.09.25

Abstract

Objective: To evaluate the effects of an electric toothbrush with vibrational frequencies of 125 Hz and 150 Hz on the orthodontic tooth movement (OTM) rate and the production of prostaglandin E2 (PGE2). Methods: Out of thirty patients (aged 18-25 years; 16 females and 14 males), ten patients each formed Group A and B, who used electric toothbrushes with 125 Hz and 150 Hz vibrations, respectively. The remaining ten patients (Group C) served as the control group and did not use electric toothbrushes. The rate of OTM and levels of PGE2 using microcapillary pipettes were calculated before the start of retraction (T0), on the 30th day (T1), on the 60th day (T2), and on the 90th day (T3) from the start of retraction in all the groups. Results: There was a statistically significant difference in the mean OTM values and PGE2 levels in all three groups at different time intervals, with the maximum difference seen in Group B compared to Group A and least in Group C at T1, T2 and T3. Conclusions: The rate of OTM and levels of PGE2 were highest in patients who used an electric toothbrush with 150 Hz mechanical vibration compared to those who used an electric toothbrush with 125 Hz mechanical vibration and least in patients who did not use an electric toothbrush. Mechanical vibration led to an increase in the PGE2 levels and accelerated the OTM.

Keywords

References

  1. Piccioni MA, Campos EA, Saad JR, Andrade MF, Galvao MR, Rached AA. Application of the finite element method in dentistry. RSBO 2013;10:369-77. https://doi.org/10.21726/rsbo.v10i4.948
  2. Sarmah A, Mathur AK, Gupta V, Pai VS, Nandini S. Finite element analysis of dental implant as orthodontic anchorage. J Contemp Dent Pract 2011;12:259-64. https://doi.org/10.5005/jp-journals-10024-1044
  3. Singh JR, Kambalyal P, Jain M, Khandelwal P. Revolution in orthodontics: finite element analysis. J Int Soc Prev Community Dent 2016;6:110-4. https://doi.org/10.4103/2231-0762.178743
  4. Ansari TA, Mascarenhas R, Husain A, Salim M. Evaluation of the power arm in bringing about bodily movement using finite element analysis. Orthodontics (Chic.) 2011;12:318-29. https://pubmed.ncbi.nlm.nih.gov/22299105/ 105
  5. Bica C, Brezeanu L, Bica D, Suciu M. Biomechanical reactions due to orthodontic forces. a finite element study. Procedia Technol 2015;19:895-900. https://doi.org/10.1016/j.protcy.2015.02.128
  6. Hamanaka R, Yamaoka S, Anh TN, Tominaga JY, Koga Y, Yoshida N. Numeric simulation model for long-term orthodontic tooth movement with contact boundary conditions using the finite element method. Am J Orthod Dentofacial Orthop 2017;152:601-12. https://doi.org/10.1016/j.ajodo.2017.03.021
  7. Takano-Yamamoto T, Sasaki K, Fatemeh G, Fukunaga T, Seiryu M, Daimaruya T, et al. Synergistic acceleration of experimental tooth movement by supplementary high-frequency vibration applied with a static force in rats. Sci Rep 2017;7:13969. https://doi.org/10.1038/s41598-017-13541-7
  8. Klein DC, Raisz LG. Prostaglandins: stimulation of bone resorption in tissue culture. Endocrinology 1970;86:1436-40. https://doi.org/10.1210/endo-86-6-1436
  9. Alfaqeeh SA, Anil S. Gingival crevicular fluid flow rate and alkaline phosphatase level as potential marker of active tooth movement. Oral Health Dent Manag 2014;13:458-63. https://pubmed.ncbi.nlm.nih.gov/24984665/
  10. Almeida RC, Capelli J Jr, Teles RP. Levels of gingival crevicular fluid matrix metalloproteinases in periodontally compromised teeth under orthodontic forces. Angle Orthod 2015;85:1009-14. https://doi.org/10.2319/101714-744.1
  11. Collins DA, Chambers TJ. Prostaglandin E2 promotes osteoclast formation in murine hematopoietic cultures through an action on hematopoietic cells. J Bone Miner Res 1992;7:555-61. https://doi.org/10.1002/jbmr.5650070512
  12. Chaudhari VC, Suchita MT. Comparison of rate of retraction and anchorage loss using nickel titanium closed coil springs and elastomeric chain during the en-masse retraction: a clinical study. J Orthod Res 2015;3:129-33. https://doi.org/10.4103/2321-3825.150582
  13. Suamphan S. Change in rate of orthodontic tooth movement and interleukin-1 beta level in gingival crevicular fluid in response to mechanical vibratory stimulation from electrical toothbrush [Master's Thesis]. Songkhla: Prince of Songkla University; 2010. http://kb.psu.ac.th:8080/psukb/bitstream/2010/8860/1/345954.pdf
  14. Limpanichkul W, Godfrey K, Srisuk N, Rattanayatikul C. Effects of low-level laser therapy on the rate of orthodontic tooth movement. Orthod Craniofac Res 2006;9:38-43. https://doi.org/10.1111/j.1601-6343.2006.00338.x
  15. Fenol A, Sasidharan RK, Krishnan S. Levels of interleukin-10 in gingival crevicular fluid and its role in the initiation and progression of gingivitis to periodontitis. J Oral Hyg Health 2014;2:135. https://doi.org/10.4172/2332-0702.1000135
  16. Jamesha FI, Maradi AP, Chithresan K, Janakiram S, Maddur PK, Rangaraju R. Comparison of gingival crevicular fluid periostin levels in healthy, chronic periodontitis, and aggressive periodontitis. J Indian Soc Periodontol 2018;22:480-6. https://doi.org/10.4103/jisp.jisp_266_18
  17. Gujar AN, Baeshen HA, Alhazmi A, Bhandi S, Raj AT, Patil S, et al. Cytokine levels in gingival crevicular fluid during orthodontic treatment with aligners compared to conventional labial fixed appliances: a 3-week clinical study. Acta Odontol Scand 2019;77:474-81. https://doi.org/10.1080/00016357.2019.1607548
  18. Nishimura M, Chiba M, Ohashi T, Sato M, Shimizu Y, Igarashi K, et al. Periodontal tissue activation by vibration: intermittent stimulation by resonance vibration accelerates experimental tooth movement in rats. Am J Orthod Dentofacial Orthop 2008;133:572-83. https://doi.org/10.1016/j.ajodo.2006.01.046
  19. Yadav S, Dobie T, Assefnia A, Gupta H, Kalajzic Z, Nanda R. Effect of low-frequency mechanical vibration on orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2015;148:440-9. https://doi.org/10.1016/j.ajodo.2015.03.031
  20. Gujar AN, Shivamurthy PG, Sabrish S. Effect of 125-150 Hz vibrational frequency electric toothbrush on teeth and supporting structures: a finite element method study. J Contemp Dent Pract 2021;22:1150-9. https://doi.org/10.5005/jp-journals-10024-3202
  21. Slot DE, Wiggelinkhuizen L, Rosema NA, Van der Weijden GA. The efficacy of manual toothbrushes following a brushing exercise: a systematic review. Int J Dent Hyg 2012;10:187-97. https://doi.org/10.1111/j.1601-5037.2012.00557.x
  22. Bahammam S, Chen CY, Ishida Y, Hayashi A, Ikeda Y, Ishii H, et al. Electric and manual oral hygiene routines affect plaque index score differently. Int J Environ Res Public Health 2021;18:13123. https://doi.org/10.3390/ijerph182413123
  23. Raisz LG. Prostaglandins and bone: physiology and pathophysiology. Osteoarthritis Cartilage 1999;7:419-21. https://doi.org/10.1053/joca.1998.0230
  24. Bowman SJ. The effect of vibration on the rate of leveling and alignment. J Clin Orthod 2014;48:678-88. https://pubmed.ncbi.nlm.nih.gov/25707947/
  25. Kau CH, Nguyen JT, English JD. The clinical evaluation of a novel cyclical force generating device in orthodontics. Orthod Pract US 2010;1:10-5. https://cdn.vivarep.com/contrib/va/documents/al_lib_66.2013103193933523.pdf 103193933523.pdf
  26. Kau CH. A radiographic analysis of tooth morphology following the use of a novel cyclical force device in orthodontics. Head Face Med 2011;7:14. https://doi.org/10.1186/1746-160X-7-14
  27. Drummond S, Canavarro C, Perinetti G, Teles R, Capelli J Jr. The monitoring of gingival crevicular fluid volume during orthodontic treatment: a longitudinal randomized split-mouth study. Eur J Orthod 2012;34:109-13. https://doi.org/10.1093/ejo/cjq172
  28. Alikhani M, Khoo E, Alyami B, Raptis M, Salgueiro JM, Oliveira SM, et al. Osteogenic effect of high-frequency acceleration on alveolar bone. J Dent Res 2012;91:413-9. https://doi.org/10.1177/0022034512438590
  29. Dinarello CA. Biology of interleukin 1. FASEB J 1988;2:108-15. https://doi.org/10.1096/fasebj.2.2.3277884
  30. Raisz LG, Sandberg AL, Goodson JM, Simmons HA, Mergenhagen SE. Complement-dependent stimulation of prostaglandin synthesis and bone resorption. Science 1974;185:789-91. https://doi.org/10.1126/science.185.4153.789
  31. Dowsett M, Eastman AR, Easty DM, Easty GC, Powles TJ, Neville AM. Prostaglandin mediation of collagenase-induced bone resorption. Nature 1976;263:72-4. https://doi.org/10.1038/263072a0
  32. Leiker BJ, Nanda RS, Currier GF, Howes RI, Sinha PK. The effects of exogenous prostaglandins on orthodontic tooth movement in rats. Am J Orthod Dentofacial Orthop 1995;108:380-8. https://doi.org/10.1016/s0889-5406(95)70035-8
  33. Yamasaki K, Miura F, Suda T. Prostaglandin as a mediator of bone resorption induced by experimental tooth movement in rats. J Dent Res 1980;59:1635-42. https://doi.org/10.1177/00220345800590101301
  34. Davidovitch Z, Nicolay OF, Ngan PW, Shanfeld JL. Neurotransmitters, cytokines, and the control of alveolar bone remodeling in orthodontics. Dent Clin North Am 1988;32:411-35. https://doi.org/10.1016/S0011-8532(22)00320-2
  35. Yamasaki K. The role of cyclic AMP, calcium, and prostaglandins in the induction of osteoclastic bone resorption associated with experimental tooth movement. J Dent Res 1983;62:877-81. https://doi.org/10.1177/00220345830620080501
  36. Benjakul S, Jitpukdeebodintra S, Leethanakul C. Effects of low magnitude high frequency mechanical vibration combined with compressive force on human periodontal ligament cells in vitro. Eur J Orthod 2018;40:356-63. https://doi.org/10.1093/ejo/cjx062
  37. Leethanakul C, Suamphan S, Jitpukdeebodintra S, Thongudomporn U, Charoemratrote C. Vibratory stimulation increases interleukin-1 beta secretion during orthodontic tooth movement. Angle Orthod 2016;86:74-80. https://doi.org/10.2319/111914-830.1
  38. Zhang C, Li J, Zhang L, Zhou Y, Hou W, Quan H, et al. Effects of mechanical vibration on proliferation and osteogenic differentiation of human periodontal ligament stem cells. Arch Oral Biol 2012;57:1395-407. https://doi.org/10.1016/j.archoralbio.2012.04.010
  39. Fukushima H, Jimi E, Okamoto F, Motokawa W, Okabe K. IL-1-induced receptor activator of NF-kappa B ligand in human periodontal ligament cells involves ERK-dependent PGE2 production. Bone 2005;36:267-75. https://doi.org/10.1016/j.bone.2004.09.011
  40. Krishnan V, Davidovitch Z. Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop 2006;129:469.e1-32. https://doi.org/10.1016/j.ajodo.2005.10.007
  41. Romer P, Kostler J, Koretsi V, Proff P. Endotoxins potentiate COX-2 and RANKL expression in compressed PDL cells. Clin Oral Investig 2013;17:2041-8. https://doi.org/10.1007/s00784-013-0928-0
  42. Nettelhoff L, Grimm S, Jacobs C, Walter C, Pabst AM, Goldschmitt J, et al. Influence of mechanical compression on human periodontal ligament fibroblasts and osteoblasts. Clin Oral Investig 2016;20:621-9. https://doi.org/10.1007/s00784-015-1542-0
  43. Marie PJ. Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys 2008;473:98-105. https://doi.org/10.1016/j.abb.2008.02.030
  44. Chen D, Kim S, Lee S, Lee JM, Choi YJ, Shin SJ, et al. The effect of mechanical vibration on osteogenesis of periodontal ligament stem cells. J Endod 2021;47:1767-74. https://doi.org/10.1016/j.joen.2021.08.014
  45. Yamasaki K, Shibata Y, Imai S, Tani Y, Shibasaki Y, Fukuhara T. Clinical application of prostaglandin E1 (PGE1) upon orthodontic tooth movement. Am J Orthod 1984;85:508-18. https://doi.org/10.1016/0002-9416(84)90091-5
  46. Caglaroglu M, Erdem A. Histopathologic investigation of the effects of prostaglandin E2 administered by different methods on tooth movement and bone metabolism. Korean J Orthod 2012;42:118-28. https://doi.org/10.4041/kjod.2012.42.3.118
  47. Seifi M, Eslami B, Saffar AS. The effect of prostaglandin E2 and calcium gluconate on orthodontic tooth movement and root resorption in rats. Eur J Orthod 2003;25:199-204. https://doi.org/10.1093/ejo/25.2.199
  48. Valiathan A, Dhar S. Prostaglandins and enhanced orthodontic tooth movement: in search of the silver bullet. Curr Sci 2006;90:311-3. https://www.jstor.org/stable/24091864
  49. Reitan K. Clinical and histologic observations on tooth movement during and after orthodontic treatment. Am J Orthod 1967;53:721-45. https://doi.org/10.1016/0002-9416(67)90118-2
  50. Yang RS, Fu WM, Wang SM, Lu KS, Liu TK, LinShiau SY. Morphological changes induced by prostaglandin E in cultured rat osteoblasts. Bone 1998;22:629-36. https://doi.org/10.1016/s8756-3282(98)00055-6