참고문헌
- Abdulridha, A. and Palermo, D. (2017), "Behaviour and modelling of hybrid SMA-steel reinforced concrete slender shear wall", Eng. Struct., 147, 77-89, https://doi.org/10.1016/j.engstruct.2017.04.058.
- Araki, Y., Shrestha, K.C., Maekawa, N., Koetaka, Y., Omori, T. and Kainuma, R. (2016), "Shaking table tests of steel frame with superelastic Cu-Al-Mn SMA tension braces", Earthq. Eng. Struct. Dyn., 45, 297-314. https://doi.org/10.1002/eqe.2659.
- Asgarian, B. and Moradi, S. (2011), "Seismic response of steel braced frames with shape memory alloy braces", J. Constr. Steel Res., 67(1), 65-74. https://doi.org/10.1016/j.jcsr.2010.06.006.
- Chang, W.S. and Araki, Y. (2016), "Use of shape-memory alloys in construction: a critical review", Proceedings of the Institution of Civil Engineers-Civil Engineering, 169(2), 87-95. https://doi.org/10.1680/jcien.15.00010.
- Chowdhury, M.A., Rahmzadeh, A., Moradi, S. and Alam M.S. (2019). "Feasibility of using reduced length superelastic shape memory alloy strands in post-tensioned steel beam-column connections", J. Intell. Mater. Syst. Struct., 30(2), 283-307. https://doi.org/10.1177/1045389X18806393.
- Corbi, O. (2003), "Influence of SMAs on the attenuation of effects of P-Δ type in shear frames", Steel Compos. Struct., 3(6), 403-420. https://doi.org/10.12989/scs.2003.3.6.403.
- Cortes-Puentes, W.L. and Palermo, D. (2017), "SMA tension brace for retrofitting concrete shear walls", Eng. Struct. 140, 177-188. https://doi.org/10.1016/j.engstruct.2017.02.045.
- Dieng, L. Helbert, G., Arbab Chirani, S., Lecompte, T. and Pilvin, P. (2013), "Use of shape memory alloys damper device to mitigate vibration amplitudes of bridge cables", Eng Struct. 56, 1547-1556. https://doi.org/10.1016/j.engstruct.2013.07.018.
- Meshaly, M.E., Youssef, M.A. and Abou Elfath, H.M. (2014), "Use of SMA bars to enhance the seismic performance of SMA braced RC frames", 6(3), 267-280. https://doi.org/10.12989/eas.2014.6.3.267.
- Fang, C., Wang, W., He, C. and Chen, Y. (2017), "Self-centring behaviour of steel and steel-concrete composite connections equipped with NiTi SMA bolts", Eng Struct., 150. 390-408. https://doi.org/10.1016/j.engstruct.2017.07.067.
- Fang, C., Wang, W., He, C. and Chen, Y. (2014), "Cyclic performance of extended end-plate connections equipped with shape memory alloy bolts", J. Constr Steel Res., 94, 122-136. https://doi.org/10.1016/j.jcsr.2013.11.008.
- Gholhaki, M., Pachideh, G. and Javahertarash, A. (2020), "Capacity spectrum of SPSW using pushover and energy method without need for calculation of target point", Structures, 26, 516-523. https://doi.org/10.1016/j.istruc.2020.04.028
- Gholhaki, M., Karimi, M. and Pachideh, G. (2019) "Investigation of Subpanel Size Effect on Behavior Factor of Stiffened Steel Plate Shear Wall", J. Struct. Construct. Eng., 5(4), 73-87. https://doi.org/10.22065/jsce.2017.86522.1198.
- Habashi, H.R., Alinia, M.M. (2010), "Characteristics of the wall-frame interaction in steel plate shear walls", J. Construct. Steel Res., 66(2), 150-158. https://doi.org/10.1016/j.jcsr.2009.09.004.
- Haque, A.B.M.R., Issa, A. and Alam, M.S. (2019), "Superelastic shape memory alloy flag-shaped hysteresis model with sliding response from residual deformation: Experimental and numerical study", J. Intel. Mater. Syst. Struct., 30(12), 1823-1849. https://doi.org/10.1177/1045389X19844328.
- Hedayati Dezfuli, F. and Shahria Alam, M. (2013), "Shape memory alloy wire-based smart natural rubber bearing", Smart Mater Struct. 22(4), 045013. https://doi.org/10.1088/0964-1726/22/4/045013.
- Hu, J.W., Noh, M.H. and Ahn, J.H. (2018), "Experimental investigation on the behavior of bracing damper systems by utilizing metallic yielding and re-centering material devices", Adv. Mater. Sci. Eng., 2018, 1-15. https://doi.org/10.1155/2018/2813058.
- Issa, A.S. and Alam, M.S. (2020), "Comparative seismic fragility assessment of buckling restrained and self-centering (friction spring and SMA) braced frames", Smart Mater. Struct., 29(5), 055029. https://doi.org/10.1088/1361-665X/ab7858.
- Issa, A.S. and Alam, M.S. (2019), "Experimental and numerical study on the seismic performance of a self-centering bracing system using closed-loop dynamic (CLD) testing", Eng. Struct., 195. 144-158. https://doi.org/10.1016/j.engstruct.2019.05.103.
- Jennings, E. and van de Lindt, J.W. (2014), "Numerical retrofit study of light-frame wood buildings using shape memory alloy devices as seismic response modification devices", J. Struct. Eng. 140(7), 4014041. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000953.
- Leon, R. and Gao, Y. (2016), "Resiliency of steel and composite structures", Front Struct Civ Eng., 10(3), 239-253. https://doi.org/10.1007/s11709-016-0349-7.
- Massah, S.R. and Dorvar, H. (2014), "Design and analysis of eccentrically braced steel frames with vertical links using shape memory alloys", Smart Mater Struct. 23(11), 115015. DOI:10.1088/0964-1726/23/11/115015.
- M. Halahla, A., B. Abu Tahnat, Y. and B. Dwaikat, M. (2022), "Analysis of beam-column joints reinforced with SMAs under monotonous loading with existence of transverse beam", Earthq. Struct., 22(3), 231-243, https://doi.org/10.12989/eas.2022.22.3.231.
- Moradi, S. and Shahria Alam, M. (2015), "Feasibility study of utilizing superelastic shape memory alloy plates in steel beam-column connections for improved seismic performance", J. Intel. Mater. Syst. Struct., 26(4), 463-475. https://doi.org/10.1177/1045389X14529032.
- Newmark, N.M. and Hall, W.J. (1982), Earthquake Spectra and Design. Engineering monographs on earthquake criteria.
- Ozbulut, O. and Hurlebaus, S. (2010), "Seismic assessment of bridge structures isolated by a shape memory alloy/rubber-based isolation system", Smart Mater Struct. 20(1), 015003, https://doi.org/10.1088/0964-1726/20/1/015003.
- Parulekar, Y.M., Ravi Kiran, A., Rami Reddy, G., Singh, R.K. and Vaze, K.K. (2014), "Shake table tests and analytical simulations of a steel structure with shape memory alloy dampers", Smart Mater Struct. 23(12), 125002. https://doi.org/10.1088/0964-1726/23/12/125002.
- Yam, M.C.H. Fang, C., C.C. Lam, A. and Zhang, Y. (2015), "Numerical study and practical design of beam-to-column connections with shape memory alloys", J Constr Steel Res., 104, 177-192. https://doi.org/10.1016/j.jcsr.2014.10.017.
- Zhu, S. and Zhang, Y. (2008), "Seismic analysis of concentrically braced frame systems with self-centering friction damping braces", J. Struct. Eng. 134(1), 121-131. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(121).
- Pachideh, G., Gholhaki, M., Yadegari, A. and Shiri, M. (2016), "Modeling and analysis on thin steel plate shear wall using the new method", 2nd International Conference on Civil Engineering, Architecture & Urban Planning elites, 2, 124-136.
- Preciado, A., Ramirez-Gaytan, A., Gutierrez, N., Vargas, D., Falcon, J.M. and Ochoa, G. (2018), "Nonlinear earthquake capacity of slender old masonry structures prestressed with steel, FRP and NiTi SMA tendons", Steel Compos. Struct., 26(2), 213-226. https://doi.org/10.12989/scs.2018.26.2.213.
- Rafiqul Haque, A.B.M. and Alam, M.S. (2017). "Hysteretic Behavior of a Piston Based Self-centering (PBSC) bracing system made of superelastic SMA bars - A feasibility study", Structures, 12, 102-114. https://doi.org/10.1016/j.istruc.2017.08.004.
- Sabouri-Ghomi, S. and Gholhaki, M. (2006), "Cyclic tests on two specimens of three-story ductile steel plate shear wall", Rep. Submitt. to Build. Hous. Res. Cent.
- Shahnewaz, M.D., and Shahria Alam, M. (2015), "Seismic Perforamnce of Reinforced Concrete Wall with Superealstic Shape Memory Alloy Rebar", Structures Congress, Portland, Oregon, https://doi.org/10.1061/9780784479117.193.
- Shahverdi, M., Czaderski, C. and Motavalli, M. (2016), "Iron-based shape memory alloys for prestressed near-surface mounted strengthening of reinforced concrete beams", Constr Build Mater. 112, 28-38. https://doi.org/10.1016/j.conbuildmat.2016.02.174.
- Torra, V., Auguet, C., Isalgue, A., Carreras, G. Terriault, P. and Lovey, F.C. (2013), "Built in dampers for stayed cables in bridges via SMA. The SMARTeR-ESF project: a mesoscopic and macroscopic experimental analysis with numerical simulations", Eng Struct. 49, 43-57. https://doi.org/10.1016/j.engstruct.2012.11.011.
- Vian, D. Bruneau, B., Tsai, K.C. and Lin, Y.C. (2009), "Special perforated steel plate shear walls with reduced beam section anchor beams. I: Experimental investigation", J. Struct. Eng. 135(3), 211-220. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:3(211).
- Wang, W., Chan, T.M. and Shao, H. (2015), "Seismic performance of beam-column joints with SMA tendons strengthened by steel angles", J Constr Steel Res. 109, 61-71. https://doi.org/10.1016/j.jcsr.2015.02.011.
- Wang, W., Chan, T.M., Shao, H. and Chen, Y. (2015), "Cyclic behavior of connections equipped with NiTi shape memory alloy and steel tendons between H-shaped beam to CHS column", Eng Struct., 88, 37-50. https://doi.org/10.1016/j.engstruct.2015.01.028.
- Wang, W., Fang, C. and Liu, J. (2017), "Self-centering beam-to-column connections with combined superelastic SMA bolts and steel angles", J Struct Eng. 143(2), 04016175, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001675.
- Wei, M.W., Liew, Y.J.R. and Fu, X.Y. (2017), "Panel action of novel partially connected buckling-restrained steel plate shear walls", J. Constr. Steel Res. 128, 483-497. https://doi.org/10.1016/j.jcsr.2016.09.008.
- Yadegari, A., Pachideh, G., Gholhaki, M. and Shiri, M. (2016). "Seismic Performance of C-SPSW", 2nd International Conference on Civil Engineering, Architecture & Urban Planning Elites, 2. 110-123.
- Yang, T., Yuan, X., Zhong, J. and Yuan, W. (2023). "Near-fault pulse seismic ductility spectra for bridge columns based on machine learning", Soil Dyn. Earthq. Eng., 164, 107582. https://doi.org/10.1016/j.soildyn.2022.107582.
- Zareie, S., Issa, A.S. and J. Seethaler, R. (2020). "Abolghassem Zabihollah, Recent advances in the applications of shape memory alloys in civil infrastructures: A review", Structures, 27, 1535-1550. https://doi.org/10.1016/j.istruc.2020.05.058.