References
- Amabili, M. (2008), Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, New York, USA.
- Alijani, F. and Amabili M. (2013), "Theory and experiments for nonlinear vibrations of imperfect rectangular plates with free edges", J. Sound Vib., 332(14), 3564-3588. https://doi.org/10.1016/j.jsv.2013.02.015.
- AmabilI, M. (2010), "Geometrically nonlinear vibrations of rectangular plates carrying a concentrated mass", J. Sound Vib., 329(21), 4501-4514. https://doi.org/10.1016/j.jsv.2010.04.024
- Amabili, M. (2016), "Nonlinear vibration of viscoelastic rectangular plates", J. Sound Vib., 362, 142-156. https://doi.org/10.1016/j.jsv.2015.09.035.
- Amabili, M. (2018a), "Nonlinear damping in nonlinear vibrations of rectangular plates: Derivation from viscoelasticity and experimental validation", J. Mech. Phys. Solids, 118, 275-292. https://doi.org/10.1016/j.jmps.2018.06.004.
- Amabili, M. (2018b), "Nonlinear vibrations and stability of laminated shells using a modified first-order shear deformation theory", Europ. J. Mech.-A/Solids, 68, 75-87. https://doi.org/10.1016/j.euromechsol.2017.11.005.
- Amabili, M., Balasubramanian, P. and Ferrari G. (2020), "Nonlinear vibrations and damping of fractional viscoelastic rectangular plates", Nonlinear Dyn., 103, 3581-3609. https://doi.org/10.1007/s11071-020-05892-0.
- Balasubramanian, P., Ferrari, G. and Amabili M. (2018), "Identification of the viscoelastic response and nonlinear damping of a rubber plate in nonlinear vibration regime", Mech. Syst. Signal Processing, 111, 376-398. https://doi.org/10.1016/j.ymssp.2018.03.061.
- Bayati, M.R., Mazaheri, H. and Rabani Bidgoli M. (2022), "Dynamic analysis by impact load in viscoelastic sandwich plates with FRP layer utilizing numerical method", Steel Compos, Struct., 43(2), 229-240. https://doi.org/10.12989/scs.2022.43.2.229.
- Cheng, Z.Q., Wang, X.X. and Huang, M.G. (1993), "Nonlinear flexural vibration of rectangular moderately thick plates and sandwich plates", Int. J. Mech. Sci., 35(10), 815-827. https://doi.org/10.1016/0020-7403(93)90041-R.
- Eshmatov, B.K. (2007), "Nonlinear vibrations and dynamic stability of viscoelastic orthotropic rectangular plates", J. Sound Vib., 300, 709-726. https://doi.org/10.1016/j.jsv.2006.08.024
- Jafari, N. (2022), "Transient, steady-state and total dynamic responses of Mindlin viscoelastic plates subjected to harmonic transversal load and in-plane compression", J. Vib. Eng. Technol., In Press. https://doi.org/10.1007/s42417-022-00646-1.
- Jafari, N. and Azhari M. (2017) "Stability analysis of arbitrarily shaped moderately thick viscoelastic plates using Laplace-Carson transformation and a simple hp cloud method", Mech. Time-Dependent Mater., 21(3), 365-381. https://doi.org/10.1007/s11043-016-9334-8.
- Jafari, N. and Azhari, M. (2021), "Free vibration analysis of viscoelastic plates with simultaneous calculation of natural frequency and viscous damping", Mathem. Comput. Simulat., 185, 646-659. https://doi.org/10.1016/j.matcom.2021.01.019.
- Jafari, N. and Azhari, M. (2022), "Dynamic stability analysis of Mindlin viscoelastic plates subjected to constant and harmonic in-plane compressions based on free vibration analysis of elastic plates", Acta Mechanica, 233, 2287-2307. https://doi.org/10.1007/s00707-022-03215-5.
- Jafari, N., Azhari, M. and Boroomand B. (2019), "Geometrically nonlinear analysis of time-dependent composite plates using time function optimization", Int. J. Non-Linear Mech., 116, 219-229. https://doi.org/10.1016/j.ijnonlinmec.2019.07.005.
- Javani, R., Rabani Bidgoli, M. and Kolahchi, R. (2019), "Buckling analysis of plates reinforced by Graphene platelet based on Halpin-Tsai and Reddy theories", Steel Compos. Struct., 31(4), 419-427. https://doi.org/10.12989/scs.2019.31.4.419.
- Jedrysiak, J. (2016), "Geometrically nonlinear vibration of thin visco-elastic periodic plates on a foundation with damping: non-asymptotic modelling", J. Theoretic. Appl. Mech., 54(3), 945-961. https://doi.org/10.15632/jtam-pl.54.3.945.
- KrishnaBhaskar, K. and MeeraSaheb, K. (2017), "Effects of aspect ratio on large amplitude free vibrations of simply supported and clamped rectangular Mindlin plates using coupled displacement field method", J. Mech. Sci. Technol., 31, 2093-2103. https://doi.org/10.1007/s12206-017-0406-8
- Lau, S.L., Cheung, Y.K. and Wu S.Y. (1984), "Nonlinear vibration of thin elastic plates, part 1: Generalized incremental Hamilton's principle and element formulation", J. Appl. Mech., 51(4), 837-844. https://doi.org/10.1115/1.3167734.
- Loghman, E., Kamali, A., Bakhtiari-Nejad, F. and Abbaszadeh, M. (2021), "Nonlinear free and forced vibrations of fractional modeled viscoelastic FGM micro-beam", Appl. Mathem. Modelling, 92, 297-314. https://doi.org/10.1016/j.apm.2020.11.011.
- Mahjoobi, M. and Rabani Bidgoli, M., (2020), "Dynamic deflection analysis induced by blast load in viscoelastic sandwich plates with nanocomposite facesheets", J. Sandw. Struct. Mater., https://doi.org/10.1177/1099636219853189.
- Mahmoudkhani, S., Haddadpour, H. and Navazi, H.M. (2014), "The effects of nonlinearities on the vibration of viscoelastic sandwich plates", Int. J. Non-Linear Mech., 62, 41-57. https://doi.org/10.1016/j.ijnonlinmec.2014.01.002.
- Makvandi1, H., Moradi, Sh., Poorveis D. and Heidari Shirazi, K. (2017), "A new approach for nonlinear vibration analysis of thin and moderately thick rectangular plates under inplane compressive load", J. Comput. Appl. Mech., 48(2), 185-198. https://doi.org/10.22059/JCAMECH.2017.240726.181.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S., (2020), "Investigating nonlinear forced vibration behavior of multi-phase nanocomposite annular sector plates using Jacobi elliptic functions", Steel Compos. Struct., 36(1), 87-101. https://doi.org/10.12989/scs.2020.36.1.087.
- Reddy, J.N. (1979), "Simple finite elements with relaxed continuity for nonlinear analysis of plates", Proc. of the 3rd International Conference in Australia on F.E.M. The University of New South Wales, July.
- Ribeiro, P.A. (2003), "Hierarchical finite element for geometrically non-linear vibration of thick plates", Meccanica, 38, 115-130. https://doi.org/10.1023/A:1022027619946.
- Saha, K.N., Misra, D., Ghosal, S. and Pohit, G. (2005), "Nonlinear free vibration analysis of square plates with various boundary conditions", J. Sound Vib., 287, 1031-1044. https://doi.org/10.1016/j.jsv.2005.03.003.
- Silva, V.A., De Lima, A.M.G., Ribeiro, L.P. and Da Silva A.R. (2020), "Uncertainty propagation and numerical evaluation of viscoelastic sandwich plates having nonlinear behavior", J. Vib. Control, 26, 447-458. https://doi.org/10.1177/1077546319889816.
- Singha, M.K. and Daripa, R. (2009), "Nonlinear vibration and dynamic stability analysis of composite plates", J. Sound Vib., 328, 541-554. https://doi.org/10.1016/j.jsv.2009.08.020.
- Touati, D. and Cederbaum G. (1994), "Dynamic stability of nonlinear viscoelastic plates", Int. J. Solids Struct., 31(17), 2367-2376. https://doi.org/10.1016/0020-7683(94)90157-0.
- Youzera, H., Ali, A., Meftah, S.A., Tounsi, A. and Hussain, M., (2022), "Nonlinear damping andforced vibration analysis of laminated composite plates with composite viscoelastic core layer", Steel Compos. Struct., 44(1), 91-104. https://doi.org/10.12989/scs.2022.44.1.091.
- Zamani, H.A., Aghdam, M.M. and Sadighi, M. (2017), "Free damped vibration analysis of Mindlin plates with hybrid material-foundation viscoelasticity", Int. J. Mech. Sci., 121, 33-43. https://doi.org/10.1016/j.ijmecsci.2016.12.010.
- Zhang, N.H. and Cheng, C.J. (1998), "Nonlinear mathematical model of viscoelastic thin plates with its applications", Comput. Meth. Appl. Mech. Eng., 16(5), 307-319. https://doi.org/10.1016/S0045-7825(98)00039-5.
- Zhou, Y.F. and Wang, Z.M. (2019), "Dynamic instability of axially moving viscoelastic plate", Europ. J. Mech. A/Solids, 73, 1-10. https://doi.org/10.1016/j.euromechsol.2018.06.009.