DOI QR코드

DOI QR Code

Development of Rapid-cycling Brassica rapa Plant Program based on Cognitive Apprenticeship Model and its Application Effects

인지적 도제 모델 기반의 Rapid-cycling Brassica rapa 식물 프로그램의 개발 및 적용 효과

  • Received : 2023.07.07
  • Accepted : 2023.08.23
  • Published : 2023.08.31

Abstract

This study was intended to develop the plant molecular biology experimental program using Rapid-cycling Brassica rapa (RcBr) based on the teaching steps and teaching methods of the cognitive apprenticeship model and to determine its application effects. In order to improve a subject's cognitive function and expertise on molecular biology experiments, two themes composed of a total 8 class sessions were selected: 'Identification of DFR gene in purple RcBr and non-purple RcBr' and 'Identification of RcBr's genetic polymorphism site using the DNA profiling method'. Research subjects were 18 pre-service teaching majors in biology education of H University in Chungbuk, Korea. The effectiveness of the developed program was verified by analyzing the enhancement of 'cognitive function' related to the use of molecular biology knowledge and technology, and the enhancement of 'domain-general metacognitive abilities.' The effect of the developed program was also determined by analyzing the task flow diagram provided. The developed program was effective in improving the cognitive functions of the pre-service teachers on the use of knowledge and technology of molecular biology experiments. It was especially effective to improve the higher cognitive function of pre-service teachers who did not have the previous experience. The developed program also showed a significant improvement in the task of metacognitive knowledge and in the planning, checking, and evaluation of metacognitive regulation, which are sub-elements of domain-general metacognitive abilities. It was found that the developed program's self-test activity could help the pre-service teachers to improve their metacognitive regulation. Therefore, this developed program turned out to be helpful for pre-service teachers to develop core competencies needed for molecular biology experimental classes. If the teaching and learning materials of the developed program could be reconstructed and applied to in-service teachers or high school students, it would be expected to improve their metacognitive abilities.

이 연구는 인지적 도제 모델의 교수 단계와 교수방법을 적용하여 Rapid-cycling Brassica rapa (RcBr)를 활용한 식물 분자생물학 실험 프로그램을 개발하여 그의 적용 효과를 알아보고자 하였다. 개발된 프로그램은 예비교사의 분자생물학 실험에 관한 전문성 제고를 위하여 'purple RcBr과 non-purple RcBr 개체의 DFR 유전자 확인'과 'DNA 프로파일링 방법을 이용한 RcBr 개체의 유전적 다형성 부위 확인'의 두 가지 실험 주제를 선정하여 총 8차시로 구성하였다. 개발된 프로그램은 충북 H 대학교 생물교육 전공 2학년 18명을 대상으로 적용하여 분자생물학 지식과 기술 활용에 관한 인지기능과 영역 일반적 메타인지 기능의 향상 효과를 알아보았으며, 개발된 프로그램에서 제공된 수업흐름도 작성 과제의 분석을 통하여 프로그램의 효과를 검증하고자 하였다. 개발된 인지적 도제 모델 기반의 RcBr 식물 프로그램은 예비교사의 분자생물학 지식 및 기술 활용에 관한 인지기능 향상에 효과적이었다. 예비교사의 선행 실험 경험에 따라 고차적 인지기능 향상에 차이를 보였는데, 선행 실험 경험이 없는 예비교사의 고차적 인지기능 향상에 특히 효과적이었다. 개발된 프로그램은 또한 영역 일반적 메타인지 기능 중 메타인지적 지식의 과제와 메타인지적 조절의 계획, 점검, 평가 부분의 하위요소에 있어 유의미한 향상 효과를 보여주었다. 이는 프로그램의 차시별 자기평가 활동이 예비교사의 메타인지적 조절 기능 향상에 도움을 주었기 때문으로 생각한다. 이 연구에서 개발된 인지적 도제 모델의 식물 프로그램은 예비교사의 분자생물학 실험에 관련된 핵심역량을 키우는데 이바지한 것으로 나타났으므로 후속 연구에서 이 교수·학습 자료를 재구성하여 과학교사 연수나 고등학생들에게 적용하여도 메타인지 기능의 향상 효과를 기대할 수 있을 것이다.

Keywords

Acknowledgement

이 논문은 한국교원대학교 2021학년도 연구년교수 학술지원비 지원을 받아 수행한 연구 결과임.

References

  1. Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., Raths, J., & Wittrock, M. C. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom's taxonomy of educational objectives. New York: Longman.
  2. Charney, J., Hmelo-Silver, C. E., Sofer, W., Neigeborn, L., Coletta, S., & Nemeroff, M. (2007). Cognitive apprenticeship in science through immersion in laboratory practices. International Journal of Science Education, 29(2), 195-213.
  3. Doran, C., & Cameron, R. J. (1995). Learning about learning. Educational Psychology in Practice, 11(2), 15-23.
  4. Flavell, J. H. (1976). Meta-cognitive aspects of problem solving. In L. Resnick (Ed.), The nature of expertise. Hillsdale, NJ: LEA.
  5. Jager, B. D., Jansen, M., & Reezigt, R. (2005). The development of metacognition in primary school learning environment. School Effectiveness and School Improvement, 16(2), 179-196.
  6. Jarvis, P. (2006). Towards a comprehensive theory of human learning. New York, NY: Routledge.
  7. Jeon, S. Y., & Yu, K. W. (2011). A qualitative study on resistance to learning in adult education contexts. Korea University Institute of Educational Research, 41, 93-119.
  8. Jeong, A. J. (2011). The effects of metacognition strategy based on reflective self-assessment on the understanding of the genetic concept and meta cognitionability of high school students (Unpublished master's thesis). Korea National University of Education, Chungbuk, Korea.
  9. Kang, I. A. (1996). Alternative constructivist models: cognitive apprenticeships, anchored instruction, and cognitive flexibility theory. Educational Technology International, 12(1), 1-19.
  10. Kang, K. M., & Kim, H. B. (2005). Preservice secondary biology teachers' understanding of biotechnology. Journal of the Korean Society of Biology Education, 33(1), 112-121.
  11. Kang, S. M., Lee, H. N., Kim, Y. S., & Kim, K. D. (2008). The perception of in-service and pre-service science teachers of the training program, and the practical use of advanced science laboratory equipment. Journal of the Korean Association for Science Education, 28(8), 880-889.
  12. Kim, J, I. (2018a). A study of class design for liberal arts computer convergence class using cognitive apprentice theory. Journal of Convergence for Information Technology, 8(1), 153-160.
  13. Kim, J. K. (2018b). Development and application of RcBr plant molecular biology experiment program for pre-service teachers based on cognitive apprenticeship (Unpublished master's thesis), Korea National University of Education, Chungbuk, Korea.
  14. Kim, J. S. (2013). A study on the development and effect of instructional design model for e-learning by using cognitive apprenticeship (Unpublished doctoral dissertation). Kwandong University, Gangwon, Korea.
  15. Korthagen, F. A. J. (2011). Making teacher education relevant for practice: the pedagogy of realistic teacher education. Orbis Scholae, 5(2), 31-50. https://doi.org/10.14712/23363177.2018.99
  16. Lave, J., & Wenger, E. (1989). Situated learning: Legitimate peripheral participation. NY: Cambridge University Press.
  17. Lee, E. J. (2010). A study of direct teaching strategy of inquiry skills applying metacognition (Unpublished doctoral dissertation). Ewha Womans University, Seoul, Korea.
  18. Merriam, S. B., Caffarella, R. S., & Baumgartner, L. M. (2007). Learning in adulthood: a comprehensive guide. San Francisco, CA: Jossey-Bass.
  19. Oh, H. S., & Lee J. K. (2011). Development of nucleosome DNA ladder preparation experiment from epidermal cells of human oral cavity. School Science Journal, 5(2), 84-91.
  20. Park, I. S. (2010). Development and implementationof science programs enhancing creative problem solving skills applying metacognition (Unpublished doctoral dissertation). Ewha Womans University, Seoul, Korea.
  21. Park, K. S. (2012). A study on roles of spinster during embryogenesis of Drosophila and development of experimental inquiry activity on regulation of gene expression in Drosophila (Unpublished doctoral dissertation). Seoul National University, Seoul, Korea.
  22. Seo, K. H. (2004). The perspectives and conceptions about good instructional practice: An interview study of teachers and students. Journal of Korean Society for Curriculum Studies, 22(4), 165-187.
  23. Seo, H. W. (2023). Cognitive apprenticeship learning-based media literacy education research - Focusing on the impact on academic achievement and learning attitudes of undergraduate international students. Korean Journal of Literacy Research, 14(2), 139-184.
  24. Shim, K. C. (2011). Study on perception of pre-service biology teachers about biotechnology. Journal of Korean Society of Biology Education, 39(1), 126-134.
  25. Wendell, D. L., & Pickard, D. (2007). Teaching human genetics with mustard: Rapid cycling Brassica rapa (Fast Plants Type) as a model for human genetics in the classroom laboratory. CBE-Life Sci. Educ., 6, 170-185.
  26. Willams, P. H., & Hill, C. B. (1986). Rapid-cycling population of Brassica rapa. Science, 232, 1385-1389.
  27. Woo, J. I. (2015). Development and application of the laboratory-oriented molecular biology inquiry program for coherent understanding of DNA, gene, and protein: Focusing on ALDH2 polymorphism (Unpublished doctoral dissertation). Seoul National University, Seoul, Korea.
  28. Woo, J. I., Cho, W. H., & Lee, J. K. (2011). Development of instruction modules of molecular biology experiment for high school students using the DNA of epithelial cells in human oral cavity. Journal of the Korean Society of Biology Education, 39(3), 439-455.