DOI QR코드

DOI QR Code

Determination of X-ray and gamma-ray shielding capabilities of recycled glass derived from deteriorated silica gel

  • P. Sopapan (Radioactive Waste Management Center, Thailand Institute of Nuclear Technology) ;
  • O. Jaiboon (Department of Physics, Faculty of Science, Ubon Ratchathani University) ;
  • R. Laopaiboon (Glass Technology Excellent Center (GTEC), Faculty of Science, Ubon Ratchathani University) ;
  • C. Yenchai (Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University) ;
  • C. Sriwunkum (Department of Physics, Faculty of Science, Ubon Ratchathani University) ;
  • S. Issarapanacheewin (Radioactive Waste Management Center, Thailand Institute of Nuclear Technology) ;
  • T. Akharawutchayanon (Radioactive Waste Management Center, Thailand Institute of Nuclear Technology) ;
  • K. Yubonmhat (Radioactive Waste Management Center, Thailand Institute of Nuclear Technology)
  • Received : 2022.10.25
  • Accepted : 2023.06.08
  • Published : 2023.09.25

Abstract

We determined the radiation shielding properties for 10CaO-xPbO-(90-x) deteriorated silica gel (DSG) glass system (x = 20, 25, 30, 35, 40, and 45 mol.%). The mass attenuation coefficient (MAC) has been estimated at photon energies of 74.23, 97.12, 122, 662, 1173, and 1332 keV using a narrow beam X-ray attenuation and transmission experiment, the XCOM program, and a PHITS simulation. The obtained MAC values were applied to estimate the half value layer (HVL), mean free path (MFP), effective atomic number, and effective electron density. Results show that the MAC value of the studied glasses ranges between 0.0549 and 1.4415 cm2/g, increases with the amount of PbO, and decreases with increasing photon energy. The HVL and MFP values decrease with increasing PbO content and increase with increasing photon energy. The recycled glass, with the addition of PbO content (20-45 mol.%), exhibited excellent radiation shielding capabilities compared to standard barite and ferrite concretes and some glass systems. Moreover, the experimental radiation shielding parameters agree with the XCOM and PHITS values. This study suggests that this new waste-recycled glass is an effective and cost-saving candidate for X-ray and gamma-ray shielding applications.

Keywords

Acknowledgement

The authors wish to thank the Department of Nuclear Engineering, Chulalongkorn University, for measuring the narrow beam X-ray attenuation and transmission methods. Special thanks also go to the Thailand Institute of Nuclear Technology (Public Organization) for providing financial support (TINT to University 2022).

References

  1. M.I. Sayyed, S.A.M. Issa, H.O. Tekin, Y.B. Saddeek, Comparative study of gamma-ray shielding and elastic properties of BaO-Bi2O3-B2O3 and ZnO-Bi2O3-B2O3 glass systems, Mater. Chem. Phys. 217 (2018) 11-22, https://doi.org/10.1016/j.matchemphys.2018.06.034.
  2. H.H. Somaily, H. Algarni, S. Alraddadi, Y.S. Rammah, T. Nutaro, M.S. Al-Buriahi, Mechanical, optical, and beta/gamma shielding properties of alkali tellurite glasses: role of ZnO, Ceram. Int. 46 (2020) 28594-28602, https://doi.org/10.1016/j.ceramint.2020.08.017.
  3. M.S. Al-Buriahi, V.P. Singh, Comparison of shielding properties of various marble concretes using GEANT4 simulation and experimental data, J. Australas. Ceram. Soc. 56 (2020) 1127-1133, https://doi.org/10.1007/s41779-020-00457-1.
  4. A. Saeed, S. Alomairy, C. Sriwunkum, M.S. Al-Buriahi, Neutron and charged particle attenuation properties of volcanic rocks, Radiat. Phys. Chem. 184 (2021), 109454, https://doi.org/10.1016/j.radphyschem.2021.109454.
  5. B. Alshahrani, I.O. Olarinoye, C. Mutuwong, C. Sriwunkum, H.A. Yakout, H.O. Tekin, M.S. Al-Buriahi, Amorphous alloys with high Fe content for radiation shielding applications, Radiat. Phys. Chem. 183 (2021), 109386, https://doi.org/10.1016/j.radphyschem.2021.109386.
  6. M.S. Al-Buriahi, C. Eke, S. Alomairy, A. Yildirim, H.I. Alsaeedy, C. Sriwunkum, Radiation attenuation properties of some commercial polymers for advanced shielding applications at low energies, Polym. Adv. Technol. 32 (2021) 2386-2396, https://doi.org/10.1002/pat.5267.
  7. D.K. Gaikwad, M.I. Sayyed, S.S. Obaid, S.A.M. Issa, P.P. Pawar, Gamma ray shielding properties of TeO2-ZnF2-As2O3-Sm2O3 glasses, J. Alloys Compd. 765 (2018) 451e458, https://doi.org/10.1016/j.jallcom.2018.06.240.
  8. R. Laopaiboon, K. Wichai, S. Khottham, J. Laopaiboon, O. Jaiboon, Investigation on elastic properties and radiation shielding of lead-recycled cathode ray tube glass system, Songklanakarin J. Sci. Technol. 42 (2020) 739-746, https://doi.org/10.14456/sjst-psu.2020.94.
  9. S.A.M. Issa, Y.B. Saddeek, H.O. Tekin, M.I. Sayyed, K.S. Shaaban, Investigations of radiation shielding using Monte Carlo method and elastic properties of PbO-SiO2-B2O3-Na2O glasses, Curr. Appl. Phys. 18 (2018) 717-727, https://doi.org/10.1016/j.cap.2018.02.018.
  10. D.K. Gaikwad, S.S. Obaid, M.I. Sayyed, R.R. Bhosale, V.V. Awasarmol, A. Kumar, M.D. Shirsata, P.P. Pawar, Comparative study of gamma ray shielding competence of WO2-TeO2-PbO glass system to different glasses and concretes, Mater. Chem. Phys. 213 (2018) 508-517, https://doi.org/10.1016/j.matchemphys.2018.04.019.
  11. G. Kilic, E. Ilik, K.A. Mahmoud, F.I. El-Agawany, S. Alomairy, Y.S. Rammah, The role of B2O3 on the structural, thermal, and radiation protection efficacy of vanadium phosphate glasses, Appl. Phys. A 127 (2021) 265, https://doi.org/10.1007/s00339-021-04409-9.
  12. C. Bootjomchai, J. Laopaiboon, C. Yenchai, R. Laopaiboon, Gamma-ray shielding and structural properties of barium-bismuth-borosilicate glasses, Radiat. Phys. Chem. 81 (2012) 785-790, https://doi.org/10.1016/j.radphyschem.2012.01.049.
  13. P. Sopapan, J. Laopaiboon, O. Jaiboon, C. Yenchai, R. Laopaiboon, Feasibility study of recycled CRT glass on elastic and radiation shielding properties used as x-ray and gamma-ray shielding materials, Prog. Nucl. Energy 119 (2020), 103149, https://doi.org/10.1016/j.pnucene.2019.103149.
  14. M. Kurudirek, N. Chutithanapanon, R. Laopaiboon, C. Yenchai, C. Bootjomchai, Effect of Bi2O3 on gamma ray shielding and structural properties of borosilicate glasses recycled from high pressure sodium lamp glass, J. Alloys Compd. 745 (2018) 355-364, https://doi.org/10.1016/j.jallcom.2018.02.158.
  15. Y.M. Tei, 2024's global consumption of silica gel is estimated at 154093 tons, in: Market Research, PW Consulting Agency, Kowloon, 2021. https://pmarketresearch.com/2024s-global-consumption-of-silica-gel-is-estimated-at-154093-tons/.
  16. International Agency for Research on Cancer (IARC), Silica, some silicates, coal dust and para-aramid fibrils, in: IARC Monographs on the Identification of Carcinogenic Risks to Hurnans, Lyon, France, October 15-22, 1996.
  17. P. Sopapan, J. Laopaiboon, O. Jaiboon, C. Bootjomchai, U. Patakham, R. Laopaiboon, A study of the effect of lead oxide on structural and elastic properties of recycled silica gel glass by ultrasonic and FTIR technique, J. Sci. Tech. UBU 3 (2017) 70-79. https://www.thaiscience.info/Journals/Article/JSUU/10989909.pdf. 10989909.pdf
  18. P. Gunhakoon, J. Laopaiboon, O. Jaiboon, S. Pencharee, R. Laopaiboon, The effect of lead oxide on structural and elastic properties of strontium lead silicate glass from deteriorated silica gel, Eng. Appl. Sci. Res. 45 (2018) 230-234, https://doi.org/10.14456/easr.2018.33.
  19. O. Ozyurt, N. Altinsoy, S.I. Karaaslan, A. Bora, B. Buyuk, I. Erk, Calculation of gamma ray attenuation coefficients of some granite samples using a Monte Carlo simulation code, Radiat. Phys. Chem. 144 (2018) 271-275, https://doi.org/10.1016/j.radphyschem.2017.08.024.
  20. M.S. Al-Buriahi, Y.S. Alajerami, A.S. Abouhaswa, A.I. Alalawi, T. Nutaro, B.T. Tonguc, Effect of chromium oxide on the physical, optical, and radiation shielding properties of lead sodium borate glasses, J. Non-Cryst. Solids 544 (2020), 120171, https://doi.org/10.1016/j.jnoncrysol.2020.120171.
  21. M.S. Al-Buriahi, F.I. El-Agawany, C. Sriwunkum, H. Akyildirim, H. Arslan, B.T. Tonguc, R. El-Mallawany, Y.S. Rammah, Influence of Bi2O3/PbO on nuclear shielding characteristics of lead-zinc-tellurite glasses, Phys. B Condens. Matter 581 (2020), 411946, https://doi.org/10.1016/j.physb.2019.411946.
  22. H. Akyildirim, M. Al-Buriahi, E. Lacomme, R. Ayad, G. Bonvicini, Oxyfluorotellurite-zinc glasses and the nuclear-shielding ability under the substitution of AlF3 by ZnO, Appl. Phys. A 126 (2020) 88, https://doi.org/10.1007/s00339-019-3265-6.
  23. I. Boukhris, I. Kebaili, M.S. Al-Buriahi, C. Sriwunkum, M.I. Sayyed, Effect of lead oxide on the optical properties and radiation shielding efficiency of antimony-sodium-tungsten glasses, Appl. Phys. A 126 (2020) 1-10, https://doi.org/10.1007/s00339-020-03932-5.
  24. K. Kaur, K.J. Singh, V. Anand, Correlation of gamma ray shielding and structural properties of PbO-BaO-P2O5 glass system, Nucl. Eng. Des. 285 (2015) 31-38, https://doi.org/10.1016/j.nucengdes.2014.12.033.
  25. Y.S. Rammah, I.O. Olarinoye, F.I. El-Agawany, A. El-Adawy, E.S. Yousef, The impact of PbF2 on the ionizing radiation shielding competence and mechanical properties of TeO2-PbF2 glasses and glass-ceramics, Ceram. Int. 47 (2021) 2547-2556, https://doi.org/10.1016/j.ceramint.2020.09.100.
  26. G. Almisned, F. Akman, W.S. AbuShanab, H.O. Tekin, M.R. Kacal, S.A.M. Issa, H. Polat, M. Oltulu, A. Ene, H.M.H. Zakaly, Novel Cu/Zn reinforced polymer composites: experimental characterization for radiation protection efficiency (RPE) and shielding properties for alpha, proton, neutron, and gamma radiations, Polymers 13 (2021) 3157, https://doi.org/10.3390/polym13183157.
  27. I. Han, H. Kolayl, S. Mehmet, Determination of mass attenuation coefficients for natural minerals from different places of Turkey, Int. J. Phys. Sci. 6 (2011) 4798-4801, https://doi.org/10.5897/IJPS11.1049.
  28. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXCom-a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem. 71 (2004) 653-654, https://doi.org/10.1016/j.radphyschem.2004.04.040.
  29. M.S. Al-Buriahi, B.T. Tonguc, Mass attenuation coefficients, effective atomic numbers and electron densities of some contrast agents for computed tomography, Radiat. Phys. Chem. 166 (2020), 108507, https://doi.org/10.1016/j.radphyschem.2019.108507.
  30. B.T. Tonguc, H. Arslan, M.S. Al-Buriahi, Studies on mass attenuation coefficients, effective atomic numbers and electron densities for some biomolecules, Radiat. Phys. Chem. 153 (2018) 86-91. https://doi.org/10.1016/j.radphyschem.2018.08.025
  31. A. El-Denglawey, H.M.H. Zakaly, K. Alshammari, Shams A.M. Issa, H.O. Tekin, W.S. AbuShanab, Y.B. Saddeek, Prediction of mechanical and radiation parameters of glasses with high Bi2O3 concentration, Results Phys. 21 (2021), 103839, https://doi.org/10.1016/j.rinp.2021.103839.
  32. H. Akyildirim, E. Kavaz, F.I. El-Agawany, E. Yousef, Y.S. Rammah, Radiation shielding features of zirconolite silicate glasses using XCOM and FLUKA simulation code, J. Non-Cryst. Solids 545 (2020), 120245, https://doi.org/10.1016/j.jnoncrysol.2020.120245.
  33. A. El-Denglawey, H.M.H. Zakaly, K. Alshammari, S.A.M. Issa, H.O. Tekin, W.S. AbuShanab, Y.B. Saddeek, Prediction of mechanical and radiation parameters of glasses with high Bi2O3 concentration, Results Phys. 21 (2021), 103839, https://doi.org/10.1016/j.rinp.2021.103839.
  34. T. Sato, Y. Iwamoto, S. Hashimoto, T. Ogawa, T. Furuta, S.I. Abe, T. Kai, P.E. Tsai, N. Matsuda, H. Iwase, N. Shigyo, L. Sihver, K. Niita, Features of particle and heavy Ion Transport code system (PHITS) version 3.02, J. Nucl. Sci. Technol. 55 (2018) 684-690, https://doi.org/10.1080/00223131.2017.1419890.
  35. H. Shi, B. Chen, T. Li, D. Yun, Precise Monte Carlo simulation of gamma-ray response functions for an NaI(Tl) detector, Appl. Radiat. Isot. 57 (2002) 517-524, https://doi.org/10.1016/S0969-8043(02)00140-9.
  36. M.S. Al-Buriahi, C. Sriwunkum, H. Arslan, B.T. Tonguc, M.A. Bourham, Investigation of barium borate glasses for radiation shielding applications, Appl. Phys. A 126 (2020) 68, https://doi.org/10.1007/s00339-019-3254-9.
  37. Y.S. Rammah, H.O. Tekin, C. Sriwunkum, I. Olarinoye, A. Alalawi, M.S. Al-Buriahi, T. Nutaro, B.T. Tonguc, Investigations on borate glasses within SBC-Bx system for gamma-ray shielding applications, Nucl. Eng. Technol. 53 (2021) 282-293, https://doi.org/10.1016/j.net.2020.06.034.
  38. M.S. Al-Buriahi, A.S. Abouhaswa, H.O. Tekin, C. Sriwunkum, F.I. El-Agawany, T. Nutaro, E. Kavaz, Y.S. Rammah, Structure, optical, gamma-ray and neutron shielding properties of NiO doped B2O3-BaCO3-Li2O3 glass systems, Ceram. Int. 46 (2020) 1711-1721, https://doi.org/10.1016/j.ceramint.2019.09.144.
  39. M.I. Sayyed, M.H.M. Zaid, N. Effendy, K.A. Matori, H.A.A. Sidek, E. Lacomme, K.A. Mahmoud, M.M. AlShammari, The influence of PbO and Bi2O3 on the radiation shielding and elastic features for different glasses, J. Mater. Res. Technol. 9 (2020) 8429-8438, https://doi.org/10.1016/j.jmrt.2020.05.113.
  40. M.S. Al-Buriahi, Z.A. Alrowaili, C. Eke, J.S. Alzahrani, I.O. Olarinoye, C. Sriwunkum, Optical and radiation shielding studies on tellurite glass system containing ZnO and Na2O, Optik 257 (2022), 168821, https://doi.org/10.1016/j.ijleo.2022.168821.
  41. J.S. Alzahrani, Z.A. Alrowaili, C. Eke, Z.M.M. Mahmoud, C. Mutuwong, M.S. AlBuriahi, Nuclear shielding properties of Ni-, Fe-, Pb-, and W-based alloys, Radiat. Phys. Chem. 195 (2022), 110090, https://doi.org/10.1016/j.radphyschem.2022.110090.
  42. E.A. Waly, M.A. Fusco, M.A. Bourham, Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials, Ann. Nucl. Energy 96 (2016) 26-30, https://doi.org/10.1016/j.anucene.2016.05.028.
  43. Y. Elmahroug, M. Almatari, M.I. Sayyed, M.G. Dong, H.O. Tekin, Investigation of radiation shielding properties for Bi2O3 - V2O5 - TeO2 glass system using MCNP5 code, J. Non-Cryst. Solids 499 (2018) 32-40, https://doi.org/10.1016/j.jnoncrysol.2018.07.008.
  44. Y.S. Rammah, E. Kavaz, U. Peris, anoglu, G. Kilic, F.I. El-Agawany, H.O. Tekin, Charged particles and gamma-ray shielding features of oxyfluoride semiconducting glasses: TeO2-Ta2O5-ZnO/ZnF2, Ceram. Int. 46 (2020) 25035-25042, https://doi.org/10.1016/j.ceramint.2020.06.289.
  45. K. Singh, S. Singh, A.S. Dhaliwal, G. Singh, Gamma radiation shielding analysis of lead-flyash concretes, Appl. Radiat. Isot. 95 (2015) 174-179, https://doi.org/10.1016/j.apradiso.2014.10.022.
  46. G. Kilic, F.I.E. Agawany, B.O. Ilik, K.A. Mahmoud, E. Ilik, Y.S. Rammah, Ta2O5 reinforced Bi2O3-TeO2-ZnO glasses: fabrication, physical, structural characterization, and radiation shielding efficacy, Opt. Mater. 112 (2021), 110757, https://doi.org/10.1016/j.optmat.2020.110757.
  47. A. Edukondalu, S. Stalin, M.S. Reddy, C. Eke, Z.A. Alrowaili, M.S. Al-Buriahi, Synthesis, thermal, optical, mechanical and radiation-attenuation characteristics of borate glass system modified by Bi2O3/MgO, Appl. Phys. A 128 (2022) 331, https://doi.org/10.1007/s00339-022-05475-3.
  48. M.S. Al-Buriahi, Z.A. Alrowaili, S. Alomairy, I.O. Olarinoye, C. Mutuwong, Optical properties and radiation shielding competence of Bi/Te-BGe glass system containing B2O3 and GeO2, Optik 257 (2022), 168883, https://doi.org/10.1016/j.ijleo.2022.168883.
  49. Radiation Shielding Glasses, Advanced optics SCHOTT AG, Germany. https://www.schott.com/en-gb/search/downloads?q=RS-360, 2013.
  50. M.S. Al-Buriahi, C. Eke, Z.A. Alrowaili, A.M. Al-Baradi, I. Kebaili, B.T. Tonguc, Optical properties and radiation shielding performance of tellurite glasses containing Li2O and MoO3, Optik 249 (2022), 168257, https://doi.org/10.1016/j.ijleo.2021.168257.
  51. M.A. Alothman, I.O. Olarinoye, C. Sriwunkum, S. Alomairy, J.S. Alzahrani, M.S. Al-Buriahi, Study of the radiation attenuation properties of MgO-Al2O3-SiO2-Li2O-Na2O glass system, J. Australas. Ceram. Soc. 58 (2022) 267-273, https://doi.org/10.1007/s41779-021-00687-x.
  52. Y.S. Rammah, I.O. Olarinoye, F.I. El-Agawany, A. El-Adawy, E.S. Yousef, The ffactor, neutron, gamma radiation and proton shielding competences of glasses with Pb or Pb/Bi heavy elements for nuclear protection applications, Ceram. Int. 46 (2020) 27163-27174, https://doi.org/10.1016/j.ceramint.2020.07.197.
  53. M.S. Shams, Y.S. Rammah, F.I. El-Agawany, R.A. Elsad, Synthesis, structure, physical, dielectric characteristics, and gamma-ray shielding competences of novel P2O5-Li2O-ZnO-CdO glasses, J. Mater. Sci. Mater. Electron. 32 (2021) 1877-1887, https://doi.org/10.1007/s10854-020-04956-6.
  54. Y.S. Rammah, I.O. Olarinoye, F.I. El-Agawany, E.S. Yousef, S. Ibrahim, A.A. Ali, SrO-reinforced potassium sodium borophosphate bioactive glasses: compositional, physical, spectral, structural properties and photon attenuation competence, J. Non-Cryst. Solids 559 (2021), 120667, https://doi.org/10.1016/j.jnoncrysol.2021.120667.
  55. Y.S. Rammah, F.I. El-Agawany, A. Gamal, I.O. Olarinoye, E.M. Ahmed, A.S. Abouhaswa, Responsibility of Bi2O3 content in photon, alpha, proton, fast and thermal neutron shielding capacity and elastic moduli of ZnO/B2O3/Bi2O3 glasses, J. Inorg. Organomet. Polym. Mater. 31 (2021) 3505-3524, https://doi.org/10.1007/s10904-021-01976-5.
  56. Y.S. Rammah, F.I. El-Agawany, A.M.A. El Soad, E. Yousef, I.A. El-Mesady, Ionizing radiation attenuation competences of gallium germanate-tellurite glasses utilizing MCNP5 simulation code and Phy-X/PSD program, Ceram. Int. 46 (2020) 22766e22773, https://doi.org/10.1016/j.ceramint.2020.06.043.
  57. H.H. Hegazy, M.S. Al-Buriahi, F. Alresheedi, F.I. El-Agawany, C. Sriwunkum, R. Neffati, Y.S. Rammah, Nuclear shielding properties of B2O3-Bi2O3-SrO glasses modified with Nd2O3: theoretical and simulation studies, Ceram. Int. 47 (2021) 2772-2780, https://doi.org/10.1016/j.ceramint.2020.09.131.
  58. K.A. Mahmoud, F.I. El-Agwany, Y.S. Rammah, O.L. Tashlykov, Gamma ray shielding capacity and build up factors of CdO doped lithium borate glasses: theoretical and simulation study, J. Non-Cryst. Solids 541 (2020), 120110, https://doi.org/10.1016/j.jnoncrysol.2020.120110.
  59. Y.S. Rammah, I.O. Olarinoye, F.I. El-Agawany, K.A. Mahmoud, I. Akkurt, E. Yousef, Evaluation of radiation shielding capacity of vanadium-tellurite-antimonite semiconducting glasses, Opt. Mater. 114 (2021), 110897, https://doi.org/10.1016/j.optmat.2021.110897.
  60. Y.S. Rammah, I.O. Olarinoye, F.I. El-Agawany, A. El-Adawy, E.S. Yousef, Environment friendly La3+ ions doped phosphate glasses/glass-ceramics for gamma radiation shielding: their potential in nuclear safety applications, Ceram. Int. 46 (2020) 27616-27626, https://doi.org/10.1016/j.ceramint.2020.07.256.
  61. Y.S. Rammah, O.F. Ozpolat, B. Alim, E. Sakar, R. El-Mallawany, F.I. El-Agawany, Assessment of gamma-ray attenuation features for La+3 co-doped zinc borotellurite glasses, Radiat. Phys. Chem. 176 (2020), 109069, https://doi.org/10.1016/j.radphyschem.2020.109069.
  62. O. Agar, M.I. Sayyed, H.O. Tekin, K.M. Kaky, S.O. Baki, I. Kityk, An investigation on shielding properties of BaO, MoO3 and P2O5 based glasses using MCNPX code, Results Phys. 12 (2019) 629-634, https://doi.org/10.1016/j.rinp.2018.12.003.
  63. Y.S. Rammah, M.S. Al-Buriahi, F.I. El-Agawany, Y.M. AbouDeif, E.S. Yousef, Investigation of mechanical features and gamma-ray shielding efficiency of ternary TeO2-based glass systems containing Li2O, Na2O, K2O, or ZnO, Ceram. Int. 46 (2020) 27561-27569, https://doi.org/10.1016/j.ceramint.2020.07.248.