DOI QR코드

DOI QR Code

Molybdenum isotopes separation using squared-off optimized cascades

  • Mahdi Aghaie (Engineering Department, Shahid Beheshti University) ;
  • Valiyollah Ghazanfari (Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute)
  • Received : 2023.01.05
  • Accepted : 2023.06.05
  • Published : 2023.09.25

Abstract

Recently molybdenum alloys have been introduced as accident tolerating materials for cladding of fuel rods. Molybdenum element has seven stable isotopes with different neutron absorption cross section used in various fields, including nuclear physics and radioisotope production. This study presents separation approaches for all intermediate isotopes of molybdenum element by squared-off cascades using a newly developed numerical code with Salp Swarm Algorithm (SSA) optimization algorithm. The parameters of cascade including feed flow rate, feed entry stage, cascade cut, input feed flow rate to gas centrifuges (GCs), and cut of the first stage are optimized to maximize both isotope recovery and cascade capacity. The squared off and squared cascades are studied, and the efficiencies are compared. The results obtained from the optimization showed that for the selected squared off cascade, Mo94 in four separation steps, Mo95 in five steps, Mo96 in six steps, Mo97 in seven steps, and Mo98 in two steps are separated to the desired concentrations. The highest recovery factor is obtained 63% for Mo94 separation and lowest recovery factor is found 45% for Mo95.

Keywords

References

  1. Manson, P.D. Benedict, H. Thomas, P.D. Pigford, P.D.H.W. Levi, Nuclear Chemical Engineering, second ed., 1981.
  2. V.A. Palkin, Molybdenum isotope separation in a cascade with a specified number of gas centrifuges in stages, At. Energy 128 (2020) 155-161, https://doi.org/10.1007/s10512-020-00667-7.
  3. S. Zeng, C. Ying, A method of separating a middle component in multicomponent isotope mixtures by gas centrifuge cascades, Separ. Sci. Technol. 35 (2000) 2173-2186, https://doi.org/10.1081/SS-100102096.
  4. F. Ezazi, M. Imani, J. Safdari, M. Mallah, S.L. Mirmohammadi, An application of nature-inspired paradigms in the overall optimization of square and squared-off cascades to separate a middle isotope of tellurium, Ann. Nucl. Energy 171 (2022), 109033, https://doi.org/10.1016/j.anucene.2022.109033.
  5. G.A. Sulaberidze, A.Y. Smirnov, V.D. Borisevich, S. Zeng, D. Jiang, Classification of model cascades for separation of multicomponent isotope mixtures, Separ. Sci. Technol. (2020), https://doi.org/10.1080/01496395.2020.1752721.
  6. M. Imani, M. Aghaie, M. Adelikhah, Introducing optimum parameters of separation cascades for 123Te using GWO based on ANN, Ann. Nucl. Energy 163 (2021), 108545, https://doi.org/10.1016/j.anucene.2021.108545.
  7. T.E. Azizov, A.Y. Smirnov, G.A. Sulaberidze, A.R. Mustafin, Optimization of a system of square cascades for efficient concentration of intermediate isotopes, J. Phys. Conf. Ser. 1696 (2020), 12010, https://doi.org/10.1088/1742-6596/1696/1/012010.
  8. M. Imani, M. Aghaie, A. Keshtkar, Numerical simulation of hydrodynamic performance of taper cascades in transient conditions, Ann. Nucl. Energy 176 (2022), 109287, https://doi.org/10.1016/j.anucene.2022.109287.
  9. A. Mustafin, A. Smirnov, S. Zeng, G. Sulaberidze, V. Borisevich, D. Jiang, Objective function at optimization of separation cascades, AIP Conf. Proc. (2019), https://doi.org/10.1063/1.5099600.
  10. L.P. Kholpanov, D.V. Potapov, G.A. Sulaberidze, V.A. Chuzhinov, On the calculation of a squared-off cascade for multicomponent isotope separation, Chem. Eng. Process. Process Intensif. 37 (1998) 359-365, https://doi.org/10.1016/S0255-2701(98)00031-2.
  11. S. Zeng, C. Ying, Transient process in gas centrifuge cascades for separation of multicomponent isotope mixtures, Separ. Sci. Technol. 36 (2001) 3439-3457, https://doi.org/10.1081/SS-100107913.
  12. S. Zeng, C. Ying, A robust and efficient calculation procedure for determining concentration distribution of multicomponent mixtures, Separ. Sci. Technol. 35 (2000) 613-622, https://doi.org/10.1081/SS-100100179.
  13. M. Imani, M. Aghaei, Application of the grey wolf optimization algorithm to separate middle components in multicomponent mixtures, J. Nucl. Res. Appl. (2022).
  14. G.A. Sulaberidze, V.D. Borisevich, Cascades for separation of multicomponent isotope mixtures, Separ. Sci. Technol. 36 (8-9) (2001) 1769-1817, https://doi.org/10.1081/ss-100104761.
  15. V.D. Borisevich, J. Yan, A.Y. Smirnov, A.K. Bonarev, S. Zeng, G.A. Sulaberidze, D. Jiang, Cascade design for isotopically modified molybdenum as an alternative to zirconium alloys, Chem. Eng. Res. Des. 128 (2017) 257-264, https://doi.org/10.1016/j.cherd.2017.10.018.
  16. S. Mirjalili, A.H. Gandomi, S.Z. Mirjalili, S. Saremi, H. Faris, S.M. Mirjalili, Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems, Adv. Eng. Software 114 (2017) 163-191, https://doi.org/10.1016/j.advengsoft.2017.07.002.
  17. S. Kassaymeh, S. Abdullah, M. Al-Betar, M. Alweshah, M. Al-Laham, Z. Othman, Self-adaptive Salp Swarm Algorithm for Optimization Problems, 2022, https://doi.org/10.21203/rs.3.rs-1600365/v1.
  18. V.A. Palkin, Optimization of a centrifuge cascade for separating a multicomponent mixture of isotopes, At. Energy 115 (2013) 109-115, https://doi.org/10.1007/s10512-013-9757-0.
  19. M. Imani, M. Aghaie, M. Adelikhah, Introducing optimum parameters of separation cascades for 123Te using GWO based on ANN, Ann. Nucl. Energy 163 (2021), 108545, https://doi.org/10.1016/j.anucene.2021.108545.