DOI QR코드

DOI QR Code

The radiation shielding proficiency and hyperspectral-based spatial distribution of lateritic terrain mapping in Irikkur block, Kannur, Kerala

  • S. Arivazhagan (Centre for Applied Geology, The Gandhigram Rural Institute- Deemed to be University) ;
  • K.A. Naseer (Department of Physics, Farook College (Autonomous)) ;
  • K.A. Mahmoud (Ural Federal University) ;
  • N.K. Libeesh (Centre for Applied Geology, The Gandhigram Rural Institute- Deemed to be University) ;
  • K.V. Arun Kumar (Department of Physics, CMS College (Autonomous)) ;
  • K.ChV. Naga Kumar (Centre for Water Resources Development and Management (CWRDM)) ;
  • M.I. Sayyed (Department of Physics, Faculty of Science, Isra University) ;
  • Mohammed S. Alqahtani (Research Center for Advance Materials (RCAMS), King Khalid University) ;
  • E. El Shiekh (Research Center for Advance Materials (RCAMS), King Khalid University) ;
  • Mayeen Uddin Khandaker (Center for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University)
  • Received : 2023.04.24
  • Accepted : 2023.06.03
  • Published : 2023.09.25

Abstract

The practice of identifying the potential zones for mineral exploration in a speedy and low-cost method includes the use of satellite imagery analysis as a part of remote sensing techniques. It is challenging to explore the iron mineralization of a region through conventional methods which are a time-consuming process. The current study utilizes the Hyperion satellite imagery for mapping the iron mineralization and associated geological features in the Irikkur region, Kannur, Kerala. Along with the remote sensing results, the field study and laboratory-based analysis were conducted to retrieve the ground truth point and geochemical proportion to verify the iron ore mineralization. The MC simulation showed for shielding properties indicate an increase in the linear attenuation coefficient with raising the Fe2O3+SiO2 concentrations in the investigated rocks where it is varied at 0.662 MeV in the range 0.190 cm-1 - 0.222 cm-1 with rising the Fe2O3+SiO2 content from 57.86 wt% to 71.15 wt%. The analysis also revealed that when the γ-ray energy increased from 0.221 MeV to 2.506 MeV, sample 1 had the largest linear attenuation coefficient, ranging from 9.33 cm1 to 0.12 cm-1. Charnockite rocks were found to have exceptional shielding qualities, making them an excellent natural choice for radiation shielding applications.

Keywords

Acknowledgement

This work was supported by the King Khalid University through a grant RCAMS/KKU/03-22 under the Research Centre for Advance Materials (RCAMS) at King Khalid University, Saudi Arabia.

References

  1. M.U. Khandaker, D.A. Bradley, H. Osman, M.I. Sayyed, A. Sulieman, M.R.I. Faruque, K.A. Naseer, A.M. Idris, The significance of nuclear data in the production of radionuclides for theranostic/therapeutic applications, Radiat. Phys. Chem. 200 (2022), 110342, https://doi.org/10.1016/j.radphyschem.2022.110342.
  2. M.I. Sayyed, M.K. Hamad, M.H. Abu Mhareb, K.A. Naseer, K.A. Mahmoud, M.U. Khandaker, H. Osman, B.H. Elesawy, Impact of modifier oxides on mechanical and radiation shielding properties of B2O3-SrO-TeO2-RO glasses (where RO = TiO2, ZnO, BaO, and PbO), Appl. Sci. 11 (2021), 10904, https://doi.org/10.3390/app112210904.
  3. M.A. Imheidat, M. KhHamad, K.A. Naseer, M.I. Sayyed, N. Dwaikat, K. Cornish, Y.S. Alajerami, M. Alqahtani, M.H.A. Mhareb, Radiation shielding, mechanical, optical, and structural properties for tellurite glass samples, Optik 268 (2022), 169774, https://doi.org/10.1016/j.ijleo.2022.169774.
  4. M.I. Sayyed, N. Dwaikat, M.H.A. Mhareb, A.N. D'Souza, N. Almousa, Y.S.M. Alajerami, F. Almasoud, K.A. Naseer, S.D. Kamath, M.U. Khandaker, H. Osman, S. Alamri, Effect of TeO2 addition on the gamma radiation shielding competence and mechanical properties of boro-tellurite glass: an experimental approach, J. Mater. Res. Technol. 18 (2022) 1017-1027, https://doi.org/10.1016/j.jmrt.2022.02.130.
  5. D.A. Aloraini, M.Y. Hanfi, M.I. Sayyed, K.A. Naseer, A.H. Almuqrin, P. Tamayo, O.L. Tashlykov, K.A. Mahmoud, Design and gamma-ray attenuation features of new concrete materials for low- and moderate-photons energy protection applications, Materials 15 (2022) 4947, https://doi.org/10.3390/ma15144947.
  6. S. Yasmin, M.U. Khandaker, D.A. Bradley, H. Osman, A. Alyahyawi, M.I. Sayyed, M.R.I. Faruque, K.A. Naseer, A.M. Idris, The efficacy of various thicknesses of float glasses for protection of gamma-radiation, Radiat. Phys. Chem. 199 (2022), 110301, https://doi.org/10.1016/j.radphyschem.2022.110301.
  7. H.M. Eyssa, R.F. Sadek, W.S. Mohamed, W. Ramadan, Structure-property behavior of polyethylene nanocomposites containing Bi2O3 and WO3 as an eco-friendly additive for radiation shielding, Ceram. Int. (2023), https://doi.org/10.1016/j.ceramint.2023.02.216.
  8. B.H.M. Darukesha, V. Radhakrishna, K. Rajanna, Direct determination of the outcomes of interaction of X-rays/gamma-rays with nanoparticles, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 1048 (2023), 167922, https://doi.org/10.1016/j.nima.2022.167922.
  9. M. Elsafi, N. Almousa, N. Al-Harbi, M.N. Almutiri, S. Yasmin, M.I. Sayyed, Ecofriendly and radiation shielding properties of newly developed epoxy with waste marble and WO3 nanoparticles, J. Mater. Res. Technol. 22 (2023) 269-277, https://doi.org/10.1016/j.jmrt.2022.11.128.
  10. A. El-Taher, H.M.H. Zakaly, R. El-Sharkawy, E.A. Allam, M. Al Meshari, M.E. Mahmoud, Effect of bismuth oxide nanoparticles on the radiation shielding of bentonite clay using Fluka modeling calculations and simulation studying, Prog. Nucl. Energy 155 (2023), 104494, https://doi.org/10.1016/j.pnucene.2022.104494.
  11. H. Gurel Ozdemir, M.R. Kacal, F. Akman, H. Polat, O. Agar, Investigation of gamma radiation shielding characteristics of bismuth reinforced ternary composites in wide photon energy region, Radiat. Phys. Chem. 208 (2023), 110924, https://doi.org/10.1016/j.radphyschem.2023.110924.
  12. E. Mansoori, J. Morshedian, M. Reza Rostami Darounkola, Elaboration of X-ray shielding of highly barite-loaded polyester concrete: structure, mechanical properties, and MCNP simulation, Construct. Build. Mater. 370 (2023), 130650, https://doi.org/10.1016/j.conbuildmat.2023.130650.
  13. M. Rabah, S. Allen, A.E. Abbas, S. Dixon, A novel comprehensive radiation shielding system eliminates need for personal lead aprons in the catheterization laboratory, Catheter, Cardiovasc. Interv. 101 (2023) 79-86, https://doi.org/10.1002/ccd.30490.
  14. S. Kok, M.S. Turetken, N. Oksuzer, H.S. Gokce, Effect of elevated temperature on radiation shielding properties of cement and geopolymer mortars including barite aggregate and colemanite powder, Materialia 27 (2023), 101693, https://doi.org/10.1016/j.mtla.2023.101693.
  15. I.G. Alhindawy, H. Gamal, A.H. Almuqrin, M.I. Sayyed, K.A. Mahmoud, Impacts of the calcination temperature on the structural and radiation shielding properties of the NASICON compound synthesized from zircon minerals, Nucl. Eng. Technol. 55 (2023) 1885-1891, https://doi.org/10.1016/j.net.2023.02.014.
  16. A. Dufour, M. Ruffenach, R. Ecoffet, J. Mekki, E. Duvivier, M. Ortet, A. Bidault, N. Gutierrez, Dream : a miniaturized spectrometer for measurement of protons and electrons on orbit, IEEE Trans. Nucl. Sci. (2023) 1, https://doi.org/10.1109/TNS.2023.3264461, 1.
  17. M. Saveliev, M. Pantin, I. Skiter, T.B. Scott, P.G. Martin, Implementation of novel evolutional algorithm for 3-dimensional radiation mapping and gamma-field reconstruction within the chornobyl sarcophagus, Algorithms 16 (2023) 204, https://doi.org/10.3390/a16040204.
  18. J. Lei, C. Yang, H. Zhang, C. Liu, D. Yan, G. Xiao, Z. He, Z. Chen, T. Yu, Radiation shielding optimization design research based on bare-bones particle swarm optimization algorithm, Nucl. Eng. Technol. (2023), https://doi.org/10.1016/j.net.2023.02.018.
  19. R.H. Freeman, Radiation hardening of spacecraft and other autonomous robotic systems: lunar safety v2.0, in: AIAA SCITECH 2023 Forum, American Institute of Aeronautics and Astronautics, Reston, Virginia, 2023, https://doi.org/10.2514/6.2023-1839.
  20. P. Vani, G. Vinitha, K.A. Naseer, K. Marimuthu, M. Durairaj, T.C. Sabari Girisun, N. Manikandan, Thulium-doped barium tellurite glasses: structural, thermal, linear, and non-linear optical investigations, J. Mater. Sci. Mater. Electron. 32 (2021) 23030-23046, https://doi.org/10.1007/s10854-021-06787-5.
  21. K.A. Naseer, K. Marimuthu, M.S. Al-Buriahi, A. Alalawi, H.O. Tekin, Influence of Bi2O3 concentration on barium-telluro-borate glasses: physical, structural and radiation-shielding properties, Ceram. Int. 47 (2021) 329e340, https://doi.org/10.1016/j.ceramint.2020.08.138.
  22. P. Evangelin Teresa, K.A. Naseer, K. Marimuthu, H. Alavian, M.I. Sayyed, Influence of modifiers on the physical, structural, elastic and radiation shielding competence of Dy3+ ions doped Alkali boro-tellurite glasses, Radiat. Phys. Chem. 189 (2021), 109741, https://doi.org/10.1016/j.radphyschem.2021.109741.
  23. S.A. Bassam, K.A. Naseer, V.K. Keerthana, P. Evangelin Teresa, C.S. Suchand Sangeeth, K.A. Mahmoud, M.I. Sayyed, M.S. Alqahtani, E. El Shiekh, M.U. Khandaker, Physical, structural, elastic and optical investigations on Dy3+ ions doped boro-tellurite glasses for radiation attenuation application, Radiat. Phys. Chem. (2023), 110798, https://doi.org/10.1016/j.radphyschem.2023.110798.
  24. K.A. Naseer, K. Marimuthu, K.A. Mahmoud, M.I. Sayyed, The concentration impact of Yb3+ on the bismuth boro-phosphate glasses: physical, structural, optical, elastic, and radiation-shielding properties, Radiat. Phys. Chem. 188 (2021), 109617, https://doi.org/10.1016/j.radphyschem.2021.109617.
  25. GSI, Indian Minerals Yearbook 2013 STATE REVIEW (KERALA), 2013.
  26. N.K. Libeesh, K.A. Naseer, K.A. Mahmoud, M.I. Sayyed, S. Arivazhagan, M.S. Alqahtani, E.S. Yousef, M.U. Khandaker, Applicability of the multispectral remote sensing on determining the natural rock complexes distribution and their evaluability on the radiation protection applications, Radiat. Phys. Chem. 193 (2022), 110004, https://doi.org/10.1016/j.radphyschem.2022.110004.
  27. S. Arivazhagan, K.A. Naseer, K.A. Mahmoud, K.V. Arun Kumar, N.K. Libeesh, M.I. Sayyed, M.S. Alqahtani, E.S. Yousef, M.U. Khandaker, Gamma-ray protection capacity evaluation and satellite data based mapping for the limestone, charnockite, and gneiss rocks in the Sirugudi taluk of the Dindigul district, India, Radiat, Phys. Chem. 196 (2022), 110108, https://doi.org/10.1016/j.radphyschem.2022.110108.
  28. N.K. Libeesh, K.A. Naseer, S. Arivazhagan, K.A. Mahmoud, M.I. Sayyed, M.S. Alqahtani, E.S. Yousef, Multispectral remote sensing for determination the Ultra-mafic complexes distribution and their applications in reducing the equivalent dose from the radioactive wastes, Eur. Phys. J. Plus. 137 (2022) 267, https://doi.org/10.1140/epjp/s13360-022-02473-5.
  29. N.K. Libeesh, K.A. Naseer, S. Arivazhagan, A.F. Abd El-Rehim, K.A. Mahmoud, M.I. Sayyed, M.U. Khandaker, Advanced nuclear radiation shielding studies of some mafic and ultramafic complexes with lithological mapping, Radiat. Phys. Chem. 189 (2021), 109777, https://doi.org/10.1016/j.radphyschem.2021.109777.
  30. N.K. Libeesh, K.A. Naseer, S. Arivazhagan, A.F.A. El-Rehim, G. Almisned, H.O. Tekin, Characterization of Ultramafic-Alkaline-Carbonatite complex for radiation shielding competencies: an experimental and Monte Carlo study with lithological mapping, Ore Geol. Rev. 142 (2022), 104735, https://doi.org/10.1016/j.oregeorev.2022.104735.
  31. K.A. Mahmoud, O.L. Tashlykov, M.H.A. Mhareb, A.H. Almuqrin, Y.S.M. Alajerami, M.I. Sayyed, A new heavy-mineral doped clay brick for gamma-ray protection purposes, Appl. Radiat. Isot. 173 (2021), 109720, https://doi.org/10.1016/j.apradiso.2021.109720.
  32. R.S. Aita, H.A. Abdel Ghany, E.M. Ibrahim, M.G. El-Feky, I.E. El Aassy, K.A. Mahmoud, Gamma-rays attenuation by mineralized siltstone and dolostone rocks: Monte Carlo simulation, theoretical and experimental evaluations, Radiat. Phys. Chem. 198 (2022), 110281, https://doi.org/10.1016/j.radphyschem.2022.110281.
  33. N.K. Libeesh, S. Arivazhagan, Spectral pathways for effective delineation of mafic-ultramafic rocks by using PRISMA hyperspectral data, Remote Sens. Appl. Soc. Environ. 30 (2023), 100955, https://doi.org/10.1016/j.rsase.2023.100955.
  34. R.P. Gupta, Remote Sensing Geology, Springer Berlin Heidelberg, Berlin, Heidelberg, Heidelberg, 2003, https://doi.org/10.1007/978-3-662-05283-9.
  35. R.N. Clark, Reflectance Spectra, 2013, pp. 178-188, https://doi.org/10.1029/RF003p0178.
  36. S.A. Bassam, K.A. Naseer, A.J. Prakash, K.A. Mahmoud, C.S. SuchandSangeeth, M.I. Sayyed, M.S. Alqahtani, E. El Sheikh, M.U. Khandaker, Effect of Tm2O3 addition on the physical, structural, elastic, and radiation-resisting attributes of tellurite-based glasses, Radiat. Phys. Chem. 209 (2023) 110988, https://doi.org/10.1016/j.radphyschem.2023.110988.
  37. S. Arivazhagan, K.A. Naseer, K.A. Mahmoud, S.A. Bassam, P.N. Naseef Mohammed, N.K. Libeesh, A.S. Sachana, M.I. Sayyed, M.S. Alqahtani, E. El Shiekh, M.U. Khandaker, The radiation shielding competence and imaging spectroscopic based studies of Iron ore region of Kozhikode district, Kerala, Nucl. Eng. Technol. 55 (2023) 2380-2387, https://doi.org/10.1016/j.net.2023.03.038.