DOI QR코드

DOI QR Code

Feasibility study on fiber-optic inorganic scintillator array sensor system for multi-dimensional scanning of radioactive waste

  • Jae Hyung Park (School of Energy Systems Engineering, Chung-Ang University) ;
  • Siwon Song (School of Energy Systems Engineering, Chung-Ang University) ;
  • Seunghyeon Kim (School of Energy Systems Engineering, Chung-Ang University) ;
  • Jinhong Kim (School of Energy Systems Engineering, Chung-Ang University) ;
  • Seunghyun Cho (Department of Organic Materials and Fiber Engineering, College of Engineering, Soongsil University) ;
  • Cheol Ho Pyeon (Research Center for Safe Nuclear System, Institute for Integrated Radiation and Nuclear Science, Kyoto University) ;
  • Bongsoo Lee (School of Energy Systems Engineering, Chung-Ang University)
  • 투고 : 2023.04.18
  • 심사 : 2023.06.01
  • 발행 : 2023.09.25

초록

We developed a miniaturized multi-dimensional radiation sensor system consisting of an inorganic scintillator array and plastic optical fibers. This system can be applied to remotely obtain the radioactivity distribution and identify the radionuclides in radioactive waste by utilizing a scanning method. Variation in scintillation light was measured in two-dimensional regions of interest and then converted into radioactivity distribution images. Outliers present in the images were removed by using a digital filter to make the hot spot location more accurate and cubic interpolation was applied to make the images smoother and clearer. Next, gamma-ray spectroscopy was performed to identify the radionuclides, and three-dimensional volume scanning was also performed to effectively find the hot spot using the proposed array sensor.

키워드

과제정보

This research was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government (MOTIE) (No. 20201520300060) and the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2020M2D2A2062457, 2022M2D4A1084440).

참고문헌

  1. The International Atomic Energy Agency (IAEA), Status and Trends in Spent Fuel and Radioactive Waste Management, 2018. IAEA Nuclear Energy Series No. NW-T-1.14.
  2. IAEA, Nuclear Technology Review 2022, 2022. IAEA/NTR/2022.
  3. IAEA, Predisposal management of radioactive waste, IAEA Safety Standards Series No, GSR Part 5, IAEA, Vienna, 2009.
  4. IAEA, Classification of Radioactive Waste, IAEA Safety Standards Series No. GSG-1, IAEA, Vienna, 2009, 2009.
  5. IAEA, Strategy and Methodology for Radioactive Waste Characterization, IAEA, Vienna, 2007. IAEA-TECDOC-1537.
  6. D. Reilly, N. Ensslin, H. Smith, Passive Nondestructive Assay of Nuclear Materials, US Nuclear Regulatory Commission, Washington DC, 1991. NUREG/CR5550.
  7. B.D. Milbrath, A.J. Peurrung, M. Bliss, W.J. Weber, Radiation detector materials: an overview, J. Mater. Res. 23 (2008) 2561-2581, https://doi.org/10.1557/JMR.2008.0319.
  8. P. Lecoq, A. Annenkov, A. Gektin, M. Korzhik, C. Pedrini, Inorganic Scintillators for Detector Systems in Physical Principles and Crystal Engineering, first ed., Springer, Berlin, 2006.
  9. K. Kamada, T. Yanagida, T. Endo, K. Tsutumi, Y. Usuki, M. Nikl, Y. Fujimoto, A. Fukabori, A. Yoshikawa, 2 inch diameter single crystal growth and scintillation properties of Ce:Gd3Al2Ga3O12, J. Cryst. Growth 352 (2012) 88-90, https://doi.org/10.1016/j.jcrysgro.2011.11.085.
  10. J. Iwanowska, L. Swiderski, T. Szczesniak, P. Sibczynski, M. Moszynski, M. Grodzicka, K. Kamada, K. Tsutsumi, Y. Usuki, T. Yanagida, A. Yoshikawa, Performance of cerium-doped Gd3Al2Ga3O12 (GAGG:Ce) scintillator in gamma-ray spectrometry, Nucl. Instrum. Methods Phys. Res. A 712 (2013) 34-40, https://doi.org/10.1016/j.nima.2013.01.064.
  11. I. Valais, S. David, C. Michail, D. Nikolopoulos, P. Liaparinos, D. Cavouras, I. Kandarakis, G.S. Panayiotakis, Comparative study of luminescence properties of LuYAP:Ce and LYSO:Ce single-crystal scintillators for use in medical imaging, Nucl. Instrum. Methods Phys. Res. A 580 (2007) 614-616, https://doi.org/10.1016/j.nima.2007.05.023.
  12. W. Chewpraditkul, L. Swiderski, M. Moszynski, T. Szczesniak, A. SyntfeldKazuch, C. Wanarak, P. Limsuwan, Scintillation properties of LuAG:Ce, YAG:Ce, and LYSO:Ce crystals for gamma-ray detection, IEEE Trans. Nucl. Sci. 56 (2009) 3800-3805, https://doi.org/10.1109/TNS.2009.2033994.
  13. K.-T. Han, W.J. Yoo, J.K. Seo, S.H. Shin, D. Jeon, S. Hong, S. Cho, J.H. Moon, B. Lee, Optical fiber-based gamma-ray spectroscopy with cerium-doped lutetium yttrium orthosilicate crystal, Opt. Rev. 20 (2013) 205-208, https://doi.org/10.1007/s10043-013-0036-z.
  14. W.J. Yoo, S.H. Shin, D.E. Lee, K.W. Jang, S. Cho, B. Lee, Development of a small-sized, flexible, and insertable fiber-optic radiation sensor for gamma-ray spectroscopy, Sensors 15 (2015) 21265-21279, https://doi.org/10.3390/s150921265.
  15. Y.B. Song, S.H. Shin, S.W. Song, H.J. Kim, S. Cho, B. Lee, Feasibility study on remote gamma spectroscopy system with fiber-optic radiation sensor, J. Radioanal. Nucl. Chem. 316 (2018) 1301-1306, https://doi.org/10.1007/s10967-018-5754-z.
  16. N. Martinez, A. Rucci, J. Marcazzo, P. Molina, M. Santiago, W. Cravero, Characterization of YVO4:Eu3+ scintillator as detector for fiber optic dosimetry, Radiat. Meas. 106 (2017) 650e656, https://doi.org/10.1016/j.radmeas.2017.03.015.
  17. M. Alharbi, S. Gillespie, P. Woulfe, P. Mccavana, S. O'Keeffe, M. Foley, Dosimetric characterization of an inorganic optical fiber sensor for external beam radiation therapy, IEEE Sens. J. 19 (2019) 2140-2147, https://doi.org/10.1109/JSEN.2018.2885409.
  18. M. Alharbi, M. Martyn, S. O'Keeffe, F. Therriault-Proulx, L. Beaulieu, M. Foley, Benchmarking a novel inorganic scintillation detector for applications in radiation therapy, Phys. Med. 68 (2019) 124-131, https://doi.org/10.1016/j.ejmp.2019.11.018.
  19. Y. Shao, S.R. Cherry, S. Siegel, R.W. Silverman, S. Majewski, Evaluation of multi-channel PMTs for readout of scintillator arrays, Nucl. Instrum. Methods Phys. Res. A 390 (1997) 209-218, https://doi.org/10.1016/S0168-9002(97)00379-3.
  20. T. Yanagida, K. Kamada, N. Kawaguchi, Y. Fujimoto, K. Fukuda, Y. Yokota, V. Chani, A. Yoshikawa, Basic study of single crystal fibers of Pr:Lu3Al5O12 scintillator for gamma-ray imaging applications, Nucl. Instrum. Methods Phys. Res. A 652 (2011) 256-259, https://doi.org/10.1016/j.nima.2010.08.114.
  21. M. Kim, W. Yoo, B. Lee, Development of a fiber-optic gamma endoscope to measure both optical and gamma images in a confined space, Opt. Express 25 (2017) 20087-20097, https://doi.org/10.1364/OE.25.020087.
  22. J. Zubia, J. Arrue, Plastic optical fibers: an introduction to their technological processes and applications, Opt. Fiber Technol. 7 (2001) 101-140, https://doi.org/10.1006/ofte.2000.0355.
  23. Y. Koike, K. Koike, Progress in low-loss and high-bandwidth plastic optical fibers, J. Polym. Sci. B 49 (2011) 2-17, https://doi.org/10.1002/polb.22170.
  24. J. Zhang, Y. Xiang, C. Wang, Y. Chen, S.C. Tjin, L. Wei, Recent advances in optical fiber enabled radiation sensors, Sensors 22 (2022) 1126-1148, https://doi.org/10.3390/s22031126.
  25. Z. Lin, S. Lv, Z. Yang, J. Qiu, S. Zhou, Structured scintillators for efficient radiation detection, Adv. Sci. 9 (2022), 2102439-2102464, https://doi.org/10.1002/advs.202102439.
  26. Epic Crystal, GAGG(Ce) scintillator datasheet. https://www.epic-crystal.com/oxide-scintillators/gagg-ce-scintillator.html.
  27. Mitsubishi Chemical, ESKA PREMIER Technical Sheet 1, https://pofeska.com/pofeskae/download/02.html.
  28. Hamamatsu, Photon counting head H11890 series datasheet. https://www.hamamatsu.com/jp/en/product/optical-sensors/pmt/pmt-module/photon-counting-head/H11890-210.html.
  29. R.W. Schafer, What is a Savitzky-Golay filter? IEEE Signal. Process. Mag. 28 (2011) 111-117, https://doi.org/10.1109/MSP.2011.941097.
  30. J.-H. Kim, G.-W. Jeung, J.-W. Lee, K.-S. Kim, Performance evaluation of a two-dimensional Savitzky-Golay filter for image smoothing applications, in: A. Hussain (Ed.), Electronics, Communications and Networks V, Lecture Notes in Electrical Engineering, vol. 382, Springer, Singapore, 2016, pp. 309-316, https://doi.org/10.1007/978-981-10-0740-8_35.