DOI QR코드

DOI QR Code

Development and validation of diffusion based CFD model for modelling of hydrogen and carbon monoxide recombination in passive autocatalytic recombiner

  • Received : 2022.11.04
  • Accepted : 2023.06.02
  • Published : 2023.09.25

Abstract

In water-cooled power reactor, hydrogen is generated in case of steam zirconium reaction during severe accident condition and later on in addition to hydrogen; CO is also generated during molten corium concrete interaction after reactor pressure vessel failure. Passive Autocatalytic Recombiners (PARs) are provided in the containment for hydrogen management. The performance of the PARs in presence of hydrogen and carbon monoxide along with air has been evaluated. Depending on the conditions, CO may either react with oxygen to form carbon dioxide (CO2) or act as catalyst poison, reducing the catalyst activity and hence the hydrogen conversion efficiency. CFD analysis has been carried out to determine the effect of CO on catalyst plate temperature for 2 & 4% v/v H2 and 1-4% v/v CO with air at the recombiner inlet for a reported experiment. The results of CFD simulations have been compared with the reported experimental data for the model validation. The reaction at the recombiner plate is modelled based on diffusion theory. The developed CFD model has been used to predict the maximum catalyst temperature and outlet species concentration for different inlet velocity and temperatures of the mixture gas. The obtained results were used to fit a correlation for obtaining removal rate of carbon monoxide inside PAR as a function of inlet velocity and concentrations.

Keywords

References

  1. H. Liu, L. Tong, X. Cao, Experimental study on hydrogen behavior and possible risk with different injection conditions in local compartment, Nucl. Eng. Technol. 52 (2020) 1650-1660. https://doi.org/10.1016/j.net.2020.01.030
  2. S. Kelm, J. Lehmkuhl, W. Jahn, H.J. Allelein, A comparative assessment of different experiments on buoyancy driven mixing processes by means of CFD, Ann. Nucl. Energy 93 (2016) 50-57. https://doi.org/10.1016/j.anucene.2015.12.032
  3. M. Carcassi, F. Fineschi, G. Lombardi, Air-Hydrogen deflagration tests at university of PISA, Nucl. Eng. Des. 104 (1987) 241-247. https://doi.org/10.1016/0029-5493(87)90202-0
  4. D.C. Visser, N.B. Siccama, S.T. Jayaraju, E.M.K. Komen, Application of a CFD based containment model to different large-scalehydrogen distribution experiments, Nucl. Eng. Des. 278 (2014) 491-502. https://doi.org/10.1016/j.nucengdes.2014.08.005
  5. International Atomic Energy Agency (IAEA), TECDOC-1661-Mitigation of Hydrogen Hazards in Severe Accidents, 2011.
  6. E. Bachellerie, F. Arnould, M. Auglaire, B. de Boeck, O. Braillard, B. Eckardt, F. Ferroni, R. Moffett, Generic approach for designing and implementing a passive autocatalytic recombiner PAR-system in nuclear power plant containments, Nucl. Eng. Des. 221 (2003) 151-165. https://doi.org/10.1016/S0029-5493(02)00330-8
  7. Y. Halounae, A. Dehbi, CFD simulation of hydrogen mitigation by a passive autocatalytic Recombiner, Nucl. Eng. Des. 330 (2018) 488-496. https://doi.org/10.1016/j.nucengdes.2018.01.018
  8. F. Fineschi, M. Bazzichi, M. Carcassi, A study on the hydrogen recombination rates of catalytic recombiners and deliberate ignition, Nucl. Eng. Des. 166 (1996) 481-494. https://doi.org/10.1016/S0029-5493(96)01264-2
  9. R. Gharari, H. Kazeminejad, N. Mataji Kojouri, A. Hedayat, A review on hydrogen generation, explosion, and mitigation during severe accidents in light water nuclear reactors, Int. J. Hydrogen Energy 43 (2018) 1939-1965. https://doi.org/10.1016/j.ijhydene.2017.11.174
  10. M. Klauck, E.-A. Reinecke, H.-J. Allelein, Effect of PAR deactivation by carbon monoxide in the late phase of a severe accident, Ann. Nucl. Energy 151 (2021), 107887.
  11. E.A. Reinecke, I.M. Tragsdorf, K. Gierling, Studies on innovative hydrogen recombiners as safety devices in the containments of light water reactors, Nucl. Eng. Des. 230 (2004) 49-59. https://doi.org/10.1016/j.nucengdes.2003.10.009
  12. E.-A. Reinecke, A. Bentaib, S. Kelm, W. Jahn, N. Meynet, C. Caroli, Open issues in the applicability of recombiner experiments and modelling to reactor simulations, Prog. Nucl. Energy 52 (2010) 136-147. https://doi.org/10.1016/j.pnucene.2009.09.010
  13. F. Liu, Z. Sun, M. Ding, H. Bian, Research progress of hydrogen behaviors in nuclear power plant containment under severe accident conditions, Int. J. Hydrogen Energy 46 (2021) 36477-36502. https://doi.org/10.1016/j.ijhydene.2021.08.151
  14. S. Gupta, E. Schmidt, B. Von Laufenberg, M. Freitag, G. Poss, F. Funke, G. Weber, Thai Test Facility for Experimental Research on Hydrogen and Fission Product, 2015.
  15. Nicolas Meynet, Bentaib Ahmed, Vincent Giovangigli, Impact of oxygen starvation on operation and potential gas-phase ignition of passive auto-catalytic recombiners, Combust. Flame 161 (2014) 2192-2202. https://doi.org/10.1016/j.combustflame.2014.02.001
  16. Berno Simon, Ernst-Arndt Reinecke, Christian Kubelt, Hans-Josef Allelein, Start-up behaviour of a passive auto-catalytic recombiner undercounter flow conditions: results of a first orienting experimental study, Nucl. Eng. Des. 278 (2014) 317-322. https://doi.org/10.1016/j.nucengdes.2014.06.029
  17. N. Meynet, A. Bentaib, Numerical study of hydrogen ignition by passive autocatalytic recombiners, in: 2nd International Topical Meeting on Safety and Technology of Nuclear Hydrogen Production, Control, and Management, January 2010.
  18. S. Gupta, T. Kanzleiter, G. Poss, Passive autocatalytic recombiners (PAR) induced ignition and the resulting hydrogen deflagration behaviour in LWR containments, in: Proceedings of NURETH-16, August 30 - September 04, 2015 Chicago, 2015.
  19. L. Gardner, Z. Liang, T. Clouthier, R. MacCoy, A large-scale study on the effect of ambient conditions on hydrogen recombiner-induced ignition, Int. J. Hydrogen Energy 46 (2021) 12594-12604. https://doi.org/10.1016/j.ijhydene.2020.06.132
  20. Matthias Heitsch, Fluid dynamic analysis of a catalytic recombiner to remove hydrogen, Nucl. Eng. Des. 201 (2000) 1-10. https://doi.org/10.1016/S0029-5493(00)00259-4
  21. Deoras M. Prabhudharwadkar, Preeti A. Aghalayam, Kannan N. Iyer, Simulation of hydrogen mitigation in catalytic recombiner: Part-I: surface chemistry modelling, Nucl. Eng. Des. 241 (2011) 1746-1757. https://doi.org/10.1016/j.nucengdes.2010.09.032
  22. B. Gera, P.K. Sharma, R.K. Singh, K.K. Vaze, CFD analysis of passive autocatalytic recombiner, Sci. Techn. Nucl. Install. (2011) 9. Article ID 862812.
  23. Ernst-Arndt Reinecke, Stephan Kelm, Wilfried Jahn, Christian Jakel, Hans-Josef Allelein, Simulation of the efficiency of hydrogen recombiners as safety devices, Int. J. Hydrogen Energy 38 (2013) 8117-8124. https://doi.org/10.1016/j.ijhydene.2012.09.093
  24. Magdalena Orszulik, Fic Adam, Tomasz Bury, CFD modeling of passive autocatalytic recombiners, Nukleonika 60 (2015) 347-353. https://doi.org/10.1515/nuka-2015-0050
  25. Ernst-Arndt Reinecke, Stephan Kelm, Paul-Martin Steffen, Michael Klauck, Hans-Josef Allelein, Validation and application of the REKO-DIREKT code for the simulation of passive autocatalytic recombiner operational behavior, Nucl. Technol. 19 (2016) 355-366. https://doi.org/10.13182/NT16-7
  26. Kweonha Park, Chong Lee Khor, CFD analysis of PAR performance as function of inlet design, Nucl. Eng. Des. 296 (2016) 38-50. https://doi.org/10.1016/j.nucengdes.2015.10.023
  27. Y. Halouane, A. Dehbi, CFD simulation of hydrogen mitigation by a passive autocatalytic Recombiner, Nucl. Eng. Des. 330 (2018) 488-496. https://doi.org/10.1016/j.nucengdes.2018.01.018
  28. Vikram Shukla, Bhuvaneshwar Gera, Sunil Ganju, Salil Varma, N.K. Maheshwari, P.K. Guchhait, S. Sengupta, Application of CFD model for Passive Autocatalytic Recombiners to formulate an empirical correlation for integratral containment analysis Application of CFD model for Passive Autocatalytic Recombiners to formulate an empirical correlation for integral containment analysis, Nucl. Eng. Technol. 54 (2022) 4159-4169. https://doi.org/10.1016/j.net.2022.06.002
  29. M.A. Jimenez, J.M. Martin-Valdepenas, F. Martin-Fuerte, J.A. Fernandez, A detailed chemistry model for transient hydrogen and carbon monoxide catalytic recombination on parallel flat Pt surfaces implemented in an integral code, Nucl. Eng. Des. 237 (2007) 460-472. https://doi.org/10.1016/j.nucengdes.2006.08.002
  30. M. Klauck, E.A. Reinecke, S. Kelm, N. Meynet, A. Bentaib, H.J. Allelein, Passive autocatalytic recombiners operation in the presence of hydrogen and carbon monoxide: experimental study and model development, Nucl. Eng. Des. 266 (2014) 137-147. https://doi.org/10.1016/j.nucengdes.2013.10.021
  31. Zhe Liang, Lee Gardner, Tony Clouthier, Experimental study of the effect of carbon monoxide on the performance of passive autocatalytic recombiners, Nucl. Eng. Des. 364 (2020), 110702.
  32. M. Freitag, B. von Laufenberg, M. Colombet, M. Klauck, Measurements of the impact of carbon monoxide on the performance of passive autocatalytic recombiners at containment-typical conditions in the Thai facility, Ann. Nucl. Energy 141 (2020), 107356.
  33. CFD-ACE+ V, User Manual, ESI CFD Inc., Huntsville, AL, 2014, 35806.
  34. B.E. Poling, J.M. Prausnitz, J. O'Connell, The Properties of Gases and Liquids, fifth ed., McGraw-Hill, New York, NY, 2000.