DOI QR코드

DOI QR Code

Buckling and bending of coated FG graphene-reinforced composite plates and shells

  • Ahmed Amine Daikh (Department of Technology, University Centre of Naama) ;
  • Amin Hamdi (Department of Civil and Environmental Engineering, Faculty of Engineering, King Abdulaziz University) ;
  • Hani M. Ahmed (Department of Civil and Environmental Engineering, Faculty of Engineering, King Abdulaziz University) ;
  • Mohamed S. Abdelwahed (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Alaa A. Abdelrahman (Mechanical Design & Production Department, Faculty of Engineering, Zagazig University) ;
  • Mohamed A. Eltaher (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University)
  • 투고 : 2021.09.15
  • 심사 : 2023.05.16
  • 발행 : 2023.08.25

초록

The advancement of theoretical research has numerous challenges, particularly with regard to the modeling of structures, in contrast to experimental investigation of the mechanical behavior of complex systems. The main objective of this investigation is to provide an analytical analysis of the static problem of a new generation of composite structure, namely, functionally graded FG graphene reinforced composite GRC coated plates/shells. A complex power law function is used to define the material's graduation. Investigations are conducted on Hardcore and Softcore coated FG plates/shells. The virtual work approach is used to perform the equilibrium equations, which are then solved using the Galerkin technique to account for various boundary conditions. With reliable published articles, the presented solution is validated. The effects of hardcore and softcore distributions, gradation indexes, and boundary conditions on the buckling, bending deflection and stresses of FG GRC-coated shells are presented in detail. Obtained results and the developed procedure are supportive for design and manufacturing of FG-GRC coated plates/shells in several fields and industries e.g., aerospace, automotive, marine, and biomedical implants.

키워드

과제정보

This research was funded by the Institutional Fund Projects under grant no. (IFPIP: 679-135-1443). The authors gratefully acknowledge technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR in Jeddah, Saudi Arabia.

참고문헌

  1. Abazid, M.A., Zenkour, A.M. and Sobhy, M. (2020), "Wave propagation in FG porous GPLs-reinforced nanoplates under in-plane mechanical load and Lorentz magnetic force via a new quasi 3D plate theory", Mech. Based Des. Struct., 1-20. https://doi.org/10.1080/15397734.2020.1769651
  2. Abdelhaffez, G.S., Daikh, A.A., Saleem, H.A. and Eltaher, M.A. (2023), "Buckling of coated functionally graded spherical nanoshells rested on orthotropic elastic medium", Mathematics, 11(2), 409. https://doi.org/10.3390/math11020409
  3. Abdelrahman, A.A., Esen, I. and Eltaher, M.A. (2021a), "Vibration response of Timoshenko perforated microbeams under accelerating load and thermal environment", Appl. Math. Comput., 407, 126307. https://doi.org/10.1016/j.amc.2021.126307
  4. Abdelrahman, A.A., Esen, I., O zarpa, C. and Eltaher, M.A. (2021b), "Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory", Appl. Math. Modell., 96, 215-235. https://doi.org/10.1016/j.apm.2021.03.008
  5. Affdl, J.H. and Kardos, J.L. (1976), "The Halpin-Tsai equations: A review", Polym. Eng. Sci., 16(5), 344-352. https://doi.org/10.1002/pen.760160512
  6. Al-Zahrani, M.A., Asiri, S.A., Ahmed, K.I. and Eltaher, M.A. (2022), "Free vibration analysis of 2D functionally graded strip beam using finite element method", J. Appl. Comput. Mech., 8(4), 1422-1430.
  7. Assie, A.E., Mohamed, S.M., Shanab, R.A., Abo-bakr, R.M. and Eltaher, M.A. (2023), "Static buckling of 2D fg porous plates resting on elastic foundation based on unified shear theories", J. Appl. Comput. Mech., 9(1), 239-258.
  8. Bensaid, I., Daikh, A.A. (2020), "Size-dependent free vibration and buckling analysis of sigmoid and power law functionally graded sandwich nanobeams with microstructural defects", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(18), 3667-3688. https://doi.org/10.1177/0954406220916481
  9. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., 6(2), 147-162. http://dx.doi.org/10.12989/anr.2018.6.2.147
  10. Dai, G. and Mishnaevsky Jr, L. (2014), "Graphene reinforced nanocomposites: 3D simulation of damage and fracture", Comput. Mater. Sci., 95, 684-692. http://doi.org/10.1016/j.commatsci.2014.08.011
  11. Daikh, A.A. and Megueni, A. (2018), "Thermal buckling analysis of functionally graded sandwich plates", J. Therm. Stress., 41(2), 139-159. https://doi.org/10.1080/01495739.2017.1393644
  12. Daikh, A.A. and Zenkour, A.M. (2020e), "Bending of functionally graded sandwich nanoplates resting on pasternak foundation under different boundary conditions", J. Appl. Comput. Mech., 6, 1245-1259. https://doi.org/10.22055/JACM.2020.33136.2166
  13. Daikh, A.A., Bachiri, A., Houari, M.S.A. and Tounsi, A. (2020b), "Size dependent free vibration and buckling of multilayered carbon nanotubes reinforced composite nanoplates in thermal environment", Mech. Based Des. Struct., 1-29. https://doi.org/10.1080/15397734.2020.1752232
  14. Daikh, A.A., Bensaid, I. and Zenkour, A.M. (2020d), "Temperature dependent thermomechanical bending response of functionally graded sandwich plates", Eng. Res. Exp., 2(1), 015006. https://doi.org/10.1088/2631-8695/ab638c
  15. Daikh, A.A., Drai, A., Bensaid, I., Houari, M.S.A. and Tounsi, A. (2020a), "On vibration of functionally graded sandwich nanoplates in the thermal environment", J. Sandw. Struct. Mater., 1099636220909790. https://doi.org/10.1177/1099636220909790
  16. Daikh, A.A., Drai, A., Houari, M.S.A. and Eltaher, M.A. (2020c), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36(6), 643-656. https://doi.org/10.12989/scs.2020.36.6.643
  17. Daikh, A.A., Houari, M.S.A. and Tounsi, A. (2019), "Buckling analysis of porous FGM sandwich nanoplates due to heat conduction via nonlocal strain gradient theory", Eng. Res. Exp., 1(1), 015022. https://doi.org/10.1088/2631-8695/ab38f9
  18. Ebrahimi, F., Nouraei, M., Dabbagh, A. and Rabczuk, T. (2020), "Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates", Adv. Nano Res., 7(4), 293-310. http://dx.doi.org/10.12989/anr.2019.7.5.293
  19. Eltaher, M.A., Agwa, M. and Kabeel, A. (2018), "Vibration analysis of material size-dependent CNTs using energy equivalent model", J. Appl. Comput. Mech., 4(2), 75-86.
  20. Esen, I., Abdelrhmaan, A.A. and Eltaher, M.A. (2021a), "Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-021-01389-5
  21. Esen, I., O zarpa, C. and Eltaher, M.A. (2021b), "Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment", Compos. Struct., 261, 113552. https://doi.org/10.1016/j.compstruct.2021.113552
  22. Esmaeilzadeh, M., Golmakani, M.A., Kadkhodayan, M., Amoozgar, M. and Bodaghi, M. (2021), "Geometrically nonlinear thermo-mechanical analysis of graphene-reinforced moving polymer nanoplates", Adv. Nano Res., 10(2), 151-163. http://doi.org/10.12989/anr.2021.10.2.151
  23. Eyvazian, A., Shahsavari, D. and Karami, B. (2020), "On the dynamic of graphene reinforced nanocomposite cylindrical shells subjected to a moving harmonic load", Int. J. Eng. Sci., 154, 103339. https://doi.org/10.1016/j.ijengsci.2020.103339
  24. Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs)", Compos. Part B Eng., 110, 132-140. http://doi.org/10.1016/j.compositesb.2016.11.024
  25. Ghannadpour, S.A.M. and Moradi, F. (2020), "Nonlocal nonlinear analysis of nano-graphene sheets under compression using semi-Galerkin technique", Adv. Nano Res., 7(5), 311-324. http://doi.org/10.12989/anr.2019.7.5.311
  26. Gholami, R. and Ansari, R. (2019), "Nonlinear stability and vibration of pre/post-buckled multilayer FG-GPLRPC rectangular plates", Appl. Math. Modell., 65, 627-660. https://doi.org/10.1016/j.apm.2018.08.038
  27. Hadad, M., Babazade, A. and Safarabadi, M. (2020), "Investigation and comparison of the effect of graphene nanoplates and carbon nanotubes on the improvement of mechanical properties in the stir casting process of aluminum matrix nanocomposites", Int. J. Adv. Manuf. Technol., 109(9), 2535-2547. https://doi.org/10.1007/s00170-020-05838-1
  28. Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036
  29. Koochi, A. and Goharimanesh, M. (2021), "Nonlinear oscillations of CNT nano-resonator based on nonlocal elasticity: The energy balance method", Reports Mech. Eng., 2(1), 41-50. https://doi.org/10.31181/rme200102041g
  30. Lu, L., She, G.L. and Guo, X. (2021a), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428
  31. Lu, L., Wang, S., Li, M. and Guo, X. (2021b), "Free vibration and dynamic stability of functionally graded composite microtubes reinforced with graphene platelets", Compos. Struct., 272, 114231. https://doi.org/10.1016/j.compstruct.2021.114231
  32. Mehrez, S., Karati, S.A., DolatAbadi, P.T., Shah, S.N.R., Azam, S., Khorami, M. and Assilzadeh, H. (2020), "Nonlocal dynamic modeling of mass sensors consisting of graphene sheets based on strain gradient theory", Adv. Nano Res., 9(4), 221-235. http://doi.org/10.12989/anr.2020.9.4.221
  33. Melaibari, A., Daikh, A.A., Basha, M., Abdalla, A.W., Othman, R., Almitani, K.H., Hamed, M.A. Abdelrahman, A. and Eltaher, M.A. (2022), "Free Vibration of FG-CNTRCs nano-plates/shells with temperature-dependent properties", Mathematics, 10(4), 583. https://doi.org/10.3390/math10040583
  34. Mohamed, S., Assie, A.E., Mohamed, N. and Eltaher, M.A. (2022), "Static and stress analyses of bi-directional FG porous plate using unified higher order kinematics theories", Steel Compos. Struct., 45(3), 305-330. https://doi.org/10.12989/SCS.2022.45.3.305
  35. Moradi-Dastjerdi, R., Behdinan, K., Safaei, B. and Qin, Z. (2020), "Static performance of agglomerated CNT-reinforced porous plates bonded with piezoceramic faces", Int. J. Mech. Sci., 188, 105966. https://doi.org/10.1016/j.ijmecsci.2020.105966
  36. Neves, A.M.A., Ferreira, A.J., Carrera, E., Cinefra, M., Jorge, R. M.N. and Soares, C.M.M. (2012), "Static analysis of functionally graded sandwich plates according to a hyperbolic theory considering Zig-Zag and warping effects", Adv. Eng. Softw., 52, 30-43. https://doi.org/10.1016/j.advengsoft.2012.05.005
  37. Qin, B., Wang, Q., Zhong, R., Zhao, X. and Shuai, C. (2020), "A three-dimensional solution for free vibration of FGP-GPLRC cylindrical shells resting on elastic foundations: A comparative and parametric study", Int. J. Mech. Sci., 187, 105896. https://doi.org/10.1016/j.ijmecsci.2020.105896
  38. Ouakad, H.M., Valipour, A., Zur, K.K., Sedighi, H.M. and Reddy, J.N. (2020), "On the nonlinear vibration and static deflection problems of actuated hybrid nanotubes based on the stress-driven nonlocal integral elasticity", Mech. Mater., 148, 103532. https://doi.org/10.1016/j.mechmat.2020.103532
  39. Rysaeva, L.K., Korznikova, E.A., Murzaev, R.T., Abdullina, D.U., Kudreyko, A.A., Baimova, J.A., Lisovenko, D.S. and Dmitriev, S.V. (2020a), "Elastic damper based on the carbon nanotube bundle", Facta Univ. Series Mech. Eng., 18(1), 001-012. https://doi.org/10.22190/FUME200128011R
  40. Rysaeva, L.K., Bachurin, D.V., Murzaev, R.T., Abdullina, D.U., Korznikova, E.A., Mulyukov, R.R. and Dmitriev, S.V. (2020b), "Evolution of the carbon nanotube bundle structure under biaxial and shear strains", Facta Univ. Series Mech. Eng., 18(4), 525-536. https://doi.org/10.22190/FUME201005043R
  41. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7(4), 265-275. http://doi.org/10.12989/anr.2019.7.4.265
  42. Sedighi, H. M. (2014), "Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory", Acta Astronautica, 95, 111-123. https://doi.org/10.1016/j.actaastro.2013.10.020
  43. Sedighi, H.M. and Daneshmand, F. (2014), "Static and dynamic pull-in instability of multi-walled carbon nanotube probes by He's iteration perturbation method", J. Mech. Sci. Technol., 28, 3459-3469. https://doi.org/10.1007/s12206-014-0807-x
  44. Sedighi, H.M., Ouakad, H.M., Dimitri, R. and Tornabene, F. (2020), "Stress-driven nonlocal elasticity for the instability analysis of fluid-conveying C-BN hybrid-nanotube in a magneto-thermal environment", Physica Scripta, 95(6), 065204. https://doi.org/10.1088/1402-4896/ab793f
  45. Shariati, A., Jung, D.W., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020), "Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters", Symmetry, 12(4), 586. https://doi.org/10.3390/sym12040586
  46. She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407
  47. She, G.L., Yan, K.M., Zhang, Y.L., Liu, H.B. and Ren, Y.R. (2018), "Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory", Eur. Phys. J. Plus, 133(9), 1-9. https://doi.org/10.1140/epjp/i2018-12196-5
  48. Shen, H. S., Xiang, Y. and Lin, F. (2017), "Thermal buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations", Thin Wall. Struct., 118, 229-237. http://doi.org/10.1016/j.tws.2017.05.006
  49. Stankovich, S., Dikin, D.A., Dommett, G.H., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T. and Ruoff, R.S. (2006), "Graphene-based composite materials", Nature, 442(7100), 282-286. https://doi.org/10.1038/nature04969
  50. Thai, C.H., Ferreira, A.J.M., Tran, T.D. and Phung-Van, P. (2019), "Free vibration, buckling and bending analyses of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the NURBS formulation", Compos. Struct., 220, 749-759. https://doi.org/10.1016/j.compstruct.2019.03.100
  51. Uzun, B., Civalek, O. and Aydogdu, I. (2019), "Optimum design of nano-scaled beam using the social spider optimization (SSO) algorithm", J. Appl. Comput. Mech.,
  52. Wu, H., Kitipornchai, S. and Yang, J. (2017), "Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates", Mater. Des., 132, 430-441. https://doi.org/10.1016/j.matdes.2017.07.025
  53. Yang, J., Wu, H. and Kitipornchai, S. (2017), "Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams", Compos. Struct., 161, 111-118. https://doi.org/10.1016/j.compstruct.2016.11.048
  54. Zenkour, A.M. (2013), "Bending analysis of functionally graded sandwich plates using a simple four-unknown shear and normal deformations theory", J. Sandw. Struct. Mater., 15(6), 629-656. https://doi.org/10.1177/1099636213498886
  55. Zghal, S., Trabelsi, S., Frikha, A. and Dammak, F. (2021), "Thermal free vibration analysis of functionally graded plates and panels with an improved finite shell element", J. Therm. Stress., 44(3), 315-341. https://doi.org/10.1080/01495739.2021.1871577
  56. Zhang, Y.W., Ding, H.X. and She, G.L. (2022), "Snap-buckling and resonance of functionally graded graphene reinforced composites curved beams resting on elastic foundations in thermal environment", J. Therm. Stress., 45(12), 1029-1042. https://doi.org/10.1080/01495739.2022.2125137
  57. Zhao, J. L., Chen, X., She, G.L., Jing, Y., Bai, R.Q., Yi, J., Pu, H.Y. and Luo, J. (2022), "Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments", Steel Compos. Struct, 43(6), 797-808. https://doi.org/10.12989/scs.2022.43.6.797
  58. Zhao, S., Zhao, Z., Yang, Z., Ke, L., Kitipornchai, S. and Yang, J. (2020), "Functionally graded graphene reinforced composite structures: A review", Eng. Struct., 210, 110339. https://doi.org/10.1016/j.engstruct.2020.110339