참고문헌
- Akrami, M., Samimi, S., Alipour, M., Bardania, H., Ramezanpour, S., Najafi, N., Hosseinkhani, S., Kamankesh, M., Haririan, I. and Hassanshahi, F. (2021), "Potential anticancer activity of a new pro-apoptotic peptide-thioctic acid gold nanoparticle platform", Nanotechnology, 32(14), 145101. https://doi.org/10.1088/1361-6528/abd3cb
- Aksorn, N. and Chanvorachote, P. (2019), "Integrin as a molecular target for anti-cancer approaches in lung cancer", Anticancer Res., 39(2), 541-548. https://doi.org/10.21873/anticanres.13146.
- Albelda, S.M., Mette, S.A., Elder, D.E., Stewart, R., Damjanovich, L., Herlyn, M. and Buck, C.A. (1990), "Integrin distribution in malignant melanoma: Association of the β3 subunit with tumor progression", Cancer Res., 50(20), 6757-6764.
- Bardania, H., Shojaosadati, S.A., Kobarfard, F., Morshedi, D., Aliakbari, F., Tahoori, M.T. and Roshani, E. (2019), "RGD-modified nano-liposomes encapsulated eptifibatide with proper hemocompatibility and cytotoxicity effect", Iranian J. Biotechnol., 17(2), e2008. https://doi.org/10.21859/ijb.2008
- Berendsen, H.J., Postma, J.V., van Gunsteren, W.F., DiNola, A. and Haak, J.R. (1984), "Molecular dynamics with coupling to an external bath", J. Chem. Phys., 81(8), 3684-3690. https://doi.org/10.1063/1.448118
- Chan, B., Matsuura, N., Takada, Y., Zetter, B.R. and Hemler, M.E. (1991), "In vitro and in vivo consequences of VLA-2 expression on rhabdomyosarcoma cells", Science, 251(5001), 1600-1602. https://doi.org/10.1126/science.2011740
- Cheah, M. and Andrews, M.R. (2018), "Integrin activation: implications for axon regeneration", Cells, 7(3), 20. https://doi.org/10.1126/science.2011740.
- Comeau, S.R., Gatchell, D.W., Vajda, S. and Camacho, C.J. (2004), "ClusPro: A32en automated docking and discrimination method for the prediction of protein complexes", Bioinform., 20(1), 45-50. https://doi.org/10.1093/bioinformatics/btg371
- Didier, B., Catherine, S., Alexei, G., Pascal, D. and Jean-Luc, C. "Clustering and internalization of integrin alphavbeta3 with a tetrameric RGD-synthetic peptide",
- Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H. and Pedersen, L.G. (1995), "A smooth particle mesh Ewald method", J. Chem. Phys., 103(19), 8577-8593. https://doi.org/10.1063/1.470117
- Fanelli, R., Schembri, L., Piarulli, U., Pinoli, M., Rasini, E., Paolillo, M., Galiazzo, M.C., Cosentino, M. and Marino, F. (2014), "Effects of a novel cyclic RGD peptidomimetic on cell proliferation, migration and angiogenic activity in human endothelial cells", Vascular Cell, 6(1), 1-9. https://doi.org/10.1186/2045-824X-6-11
- Fu, S., Xu, X., Ma, Y., Zhang, S. and Zhang, S. (2019), "RGD peptide-based non-viral gene delivery vectors targeting integrin αvβ3 for cancer therapy", 27(1), 1-11. https://doi.org/10.1080/1061186X.2018.1455841
- Gehlsen, K.R., Davis, G.E. and Sriramarao, P. (1992), "Integrin expression in human melanoma cells with differing invasive and metastatic properties", Clin. Exp. Metastas., 10(2), 111-120. https://doi.org/10.1007/BF00114587
- Giancotti, F.G. and Ruoslahti, E. (1999), "Integrin signaling", Science, 285(5430), 1028-1033. https://doi.org/10.1126/science.285.5430.1028
- Goligorsky, M.S., Kessler, H. and Romanov, V.I. (1998), "Molecular mimicry of integrin ligation: therapeutic potential of arginine-glycine-aspartic acid (RGD) peptides", Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association-European Renal Association, 13(2), 254-263. https://doi.org/10.1093/oxfordjournals.ndt.a027815
- Gurrath, M., Muller, G., Kessler, H., Aumailley, M. and Timpl, R. (1992), "Conformation/activity studies of rationally designed potent anti-adhesive RGD peptides", Eur. J. Biochem., 210(3), 911-921. https://doi.org/10.1111/j.1432-1033.1992.tb17495.x
- Humphrey, W., Dalke, A. and Schulten, K. (1996), "VMD: visual molecular dynamics", J. Mol. Graph., 14(1), 33-38. https://doi.org/10.1016/0263-7855(96)00018-5
- Jwad, R., Weissberger, D. and Hunter, L. (2020), "Strategies for fine-tuning the conformations of cyclic peptides", Chem. Rev., 120(17), 9743-9789. https://doi.org/10.1021/acs.chemrev.0c00013
- Kok, R.J., Schraa, A.J., Bos, E.J., Moorlag, H.E., A sgeirsdottir, S.A., Everts, M., Meijer, D.K. and Molema, G. (2002), "Preparation and functional evaluation of RGD-modified proteins as αvβ3 integrin directed therapeutics", Bioconjugate Chem., 13(1), 128-135. https://doi.org/10.1021/bc015561+
- Kozakov, D., Hall, D.R., Xia, B., Porter, K.A., Padhorny, D., Yueh, C., Beglov, D. and Vajda, S. (2017), "The ClusPro web server for protein-protein docking", Nature Protoc., 12(2), 255-278. https://doi.org/10.1038/nprot.2016.169
- Krishn, S.R., Singh, A., Bowler, N., Duffy, A.N., Friedman, A., Fedele, C., Kurtoglu, S., Tripathi, S.K., Wang, K. and Hawkins, A. (2019), "Prostate cancer sheds the αvβ3 integrin in vivo through exosomes", Matrix Biol., 77, 41-57. https://doi.org/10.1016/j.matbio.2018.08.004
- Kwakwa, K.A. and Sterling, J.A. (2017), "Integrin αvβ3 signaling in tumor-induced bone disease", Cancers, 9(7), 84. https://doi.org/10.3390/cancers9070084
- Leng, Q. and Mixson, A.J. (2005), "Modified branched peptides with a histidine-rich tail enhance in vitro gene transfection", 33(4), e40-e40. https://doi.org/10.1093/nar/gni040
- Leng, Q., Scaria, P., Zhu, J., Ambulos, N., Campbell, P. and Mixson, A.J. (2005), "Highly branched HK peptides are effective carriers of siRNA", 7(7), 977-986. https://doi.org/10.1002/jgm.748
- Lorenzen, S. and Zhang, Y. (2007), "Identification of near-native structures by clustering protein docking conformations", Proteins Struct. Funct. Bioinform., 68(1), 187-194. https://doi.org/10.1002/prot.21442
- Mahmoudi, R., Ashraf Mirahmadi-Babaheidri, S., Delaviz, H., Fouani, M.H., Alipour, M., Jafari Barmak, M., Christiansen, G. and Bardania, H. (2021), "RGD peptide-mediated liposomal curcumin targeted delivery to breast cancer cells", J. Biomater. Appl., 35(7), 743-753. https://doi.org/10.1177/0885328220949367
- Marchini, M., Mingozzi, M., Colombo, R., Guzzetti, I., Belvisi, L., Vasile, F., Potenza, D., Piarulli, U., Arosio, D. and Gennari, C. (2012), "Cyclic RGD peptidomimetics containing bifunctional diketopiperazine scaffolds as new potent integrin ligands", Chem. A Eur. J., 18(20), 6195-6207. https://doi.org/10.1002/chem.201200457
- Marrink, S.J., Risselada, H.J., Yefimov, S., Tieleman, D.P. and De Vries, A.H. (2007), "The MARTINI force field: Coarse grained model for biomolecular simulations", J. Phys. Chem. B, 111(27), 7812-7824. https://doi.org/10.1021/jp071097f
- Mezu-Ndubuisi, O.J. and Maheshwari, A. (2020), "The role of integrins in inflammation and angiogenesis", Pediatric Res., 1-8. https://doi.org/10.1038/s41390-020-01177-9
- Monticelli, L., Kandasamy, S.K., Periole, X., Larson, R.G., Tieleman, D.P. and Marrink, S.J. (2008), "The MARTINI coarse-grained force field: Extension to proteins", J. Chem. Theor. Comput., 4(5), 819-834. https://doi.org/10.1021/ct700324xr
- Nagae, M., Re, S., Mihara, E., Nogi, T., Sugita, Y. and Takagi, J. (2012), "Crystal structure of α5β1 integrin ectodomain: Atomic details of the fibronectin receptor", J. Cell Biol., 197(1), 131-140. https://doi.org/10.1083/jcb.201111077
- Nieberler, M., Reuning, U., Reichart, F., Notni, J., Wester, H.J., Schwaiger, M., Weinmuller, M., Rader, A., Steiger, K. and Kessler, H. (2017), "Exploring the role of RGD-recognizing integrins in cancer", Cancers, 9(9), 116. https://doi.org/10.3390/cancers9090116
- Panzeri, S., Zanella, S., Arosio, D., Vahdati, L., Dal Corso, A., Pignataro, L., Paolillo, M., Schinelli, S., Belvisi, L. and Gennari, C. (2015), "Cyclic isoDGR and RGD peptidomimetics containing bifunctional diketopiperazine scaffolds are integrin antagonists", Chem. A Eur. J., 21(16), 6265-6271. https://doi.org/10.1002/chem.201406567
- Plantefaber, L.C. and Hynes, R.O. (1989), "Changes in integrin receptors on oncogenically transformed cells", Cell, 56(2), 281-290. https://doi.org/10.1016/0092-8674(89)90902-1
- Porter, K.A., Xia, B., Beglov, D., Bohnuud, T., Alam, N., Schueler-Furman, O. and Kozakov, D.J.B. (2017), "ClusPro PeptiDock: Efficient global docking of peptide recognition motifs using FFT", 33(20), 3299-3301. https://doi.org/10.1093/bioinformatics/btx216
- Rose, P.W., Beran, B., Bi, C., Bluhm, W.F., Dimitropoulos, D., Goodsell, D.S., Prlic, A., Quesada, M., Quinn, G.B. and Westbrook, J.D. (2010), "The RCSB Protein Data Bank: redesigned web site and web services", Nucleic Acids Res., 39(suppl 1), D392-D401. https://doi.org/10.1093/nar/gkq1021
- Sacco, G., Dal Corso, A., Arosio, D., Belvisi, L., Paolillo, M., Pignataro, L. and Gennari, C. (2019), "A dimeric bicyclic RGD ligand displays enhanced integrin binding affinity and strong biological effects on U-373 MG glioblastoma cells", Organ. Biomol. Chem., 17(39), 8913-8917. https://doi.org/10.1039/C9OB01811E
- Saudek, V., Atkinson, R.A. and Pelton, J.T. (1991), "Three-dimensional structure of echistatin, the smallest active RGD protein", Biochem., 30(30), 7369-7372. https://doi.org/10.1021/bi00244a003
- Shimaoka, M., Kawamoto, E., Gaowa, A., Okamoto, T. and Park, E.J. (2019), "Connexins and integrins in exosomes", Cancers, 11(1), 106. https://doi.org/10.3390/cancers11010106
- Tang, L., Xu, M., Zhang, L., Qu, L. and Liu, X. (2020), "Role of αVβ3 in prostate cancer: Metastasis initiator and important therapeutic target", OncoTargets Therapy. 13 7411.
- Toum, V., Bolley, J., Lalatonne, Y., Barbey, C., Motte, L., Lecouvey, M., Royer, J., Dupont, N. and Perard-Viret, J. (2015), "In silico studies, synthesis and binding evaluation of substituted 2-pyrrolidinones as peptidomimetics of RGD tripeptide sequence", Eur. J. Med. Chem., 93, 360-372. https://doi.org/10.1016/j.ejmech.2015.02.017
- Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E. and Berendsen, H.J. (2005), "GROMACS: Fast, flexible, and free", J. Comput. Chem., 26(16), 1701-1718. https://doi.org/10.1002/jcc.20291. PMID: 16211538.
- Wakefield, A.E., Wuest, W.M. and Voelz, V.A. (2015), "Molecular simulation of conformational pre-organization in cyclic RGD peptides", J. Chem. Inform. Model., 55(4), 806-813. https://doi.org/10.1021/ci500768u
- Wu, Z., Cheng, X., Hong, H., Zhao, X. and Zhou, Z. (2017), "New potent and selective αvβ3 integrin ligands: Macrocyclic peptides containing RGD motif synthesized by sortase A-mediated ligation", Bioorgan. Med. Chem. Lett., 27(9), 1911-1913. https://doi.org/10.1016/j.bmcl.2017.03.035
- Xiao, T., Takagi, J., Coller, B.S., Wang, J.H. and Springer, T.A. (2004), "Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics", Nature, 432(7013), 59-67. https://doi.org/10.1038/nature02976
- Xiong, J.-P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S.L. and Arnaout, M.A. (2002), "Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand", Science, 296(5565), 151-155. https://doi.org/10.1126/science.1069040
- Xiong, J.-P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S.L. and Arnaout, M.A.J.S. (2002), "Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand", 296(5565), 151-155. https://doi.org/10.1126/science.1069040
- Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J. and Zhang, Y. (2015), "The I-TASSER Suite: protein structure and function prediction", Nature Methods, 12(1), 7-8. https://doi.org/10.1038/nmeth.3213
- Yu, Y.P., Wang, Q., Liu, Y.C. and Xie, Y. (2014), "Molecular basis for the targeted binding of RGD-containing peptide to integrin αVβ3", Biomater., 35(5), 1667-1675. https://doi.org/10.1016/j.biomaterials.2013.10.072
- Yu, Y.P., Wang, Q., Liu, Y.C. and Xie, Y.J.B. (2014), "Molecular basis for the targeted binding of RGD-containing peptide to integrin αVβ3", 35(5), 1667-1675. https://doi.org/10.1016/j.biomaterials.2013.10.072
- Zitzmann, S., Ehemann, V. and Schwab, M. (2002), "Arginine-glycine-aspartic acid (RGD)-peptide binds to both tumor and tumor-endothelial cells in vivo", Cancer Res., 62(18), 5139-5143.