DOI QR코드

DOI QR Code

High-efficiency bidirectional low-voltage power converter for fuel-cell electric vehicles

  • Woo-Seok Lee (Department of Electrical Engineering, Myongji University) ;
  • Se-Young Bae (Department of Electrical Engineering, Myongji University) ;
  • Dal-Hyeon Cho (Department of Electrical Engineering, Myongji University) ;
  • Hye-Sung Yoon (Hyundai-Rotem) ;
  • Il-Oun Lee (Department of Electrical Engineering, Myongji University)
  • Received : 2023.05.18
  • Accepted : 2023.07.06
  • Published : 2023.09.20

Abstract

This paper proposes a bidirectional low-voltage DC-to-DC converter for advanced fuel-cell electric vehicles (FCEVs). The proposed converter consists of two parallel-operated power converters driving the low-voltage output stage to reduce the size of the filter. Two power converters are internally connected in series with an isolated LLC resonant converter and a non-isolated buck/boost converter to achieve high efficiency in both directions while ensuring very wide input and output voltage ranges. The LLC resonant converter generates an input from a 12 V low-voltage battery to a non-isolated converter when starting an FCEV. Once the fuel-cell stack is activated, the power flow reverses, and the non-isolated buck/boost converter regulates the input voltage for the LLC resonant converter from the power generated in the fuel-cell stack. To validate the performance of the proposed converter, a prototype converter is designed, built, and tested with 2.0 kW in the forward powering mode, 4.5 kW in the reverse powering mode, a 260-430 VDC input, and a 10-15 VDC output. Experimental results demonstrate that the proposed converter achieves a power conversion efficiency of over 95.5% in both the forward and reverse powering modes, while ensuring stable bidirectional operation and much lower current and voltage ripples.

Keywords

Acknowledgement

This work is supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020R1D1A1B07048209).

References

  1. IEA, Global EV Outlook 2020, IEA, Paris. [Online]. Available: https://www.iea.org/reports/global-ev-outlook-2020 (2020)
  2. IEA, National and sub-national fuel cell electric vehicle targets for selected countries, 2018-2030, IEA, Paris. [Online]. Available: https://www.iea.org/reports/global-ev-outlook-2020
  3. IEA, Global EV Data Explorer, IEA, Paris. [Online]. Available: https://www.iea.org/articles/global-ev-data-explorer (2021)
  4. IEA, Global EV Outlook 2021, IEA, Paris. [Online]. Available: https://www.iea.org/reports/global-ev-outlook-2021 (2021)
  5. IEA, Global EV Policy Explorer, IEA, Paris. [Online]. Available: https://www.iea.org/articles/global-ev-policy-explorer (2021)
  6. IEA, National and sub-national fuel cell electric vehicle targets for selected countries, 2018-2030, IEA, Paris. [Online]. Available: https://www.iea.org/data-and-statistics/charts/national-and-sub-national-fuel-cell-electric-vehicle-targets-for-selected-countries-2018-2030
  7. Lyu, D., Soeiro, T.B., Bauer, P.: Design and implementation of a reconfigurable phase shift full-bridge converter for wide voltage range EV charging application. IEEE Trans. Transp. Electr. 9(1), 1200-1214 (2023) https://doi.org/10.1109/TTE.2022.3176826
  8. Mouli, G.R.C., Schijfelen, J., Heuvel, M.V.D., Kardolus, M., Bauer, P.: A 10kW solar-powered bidirectional EV charger compatible with Chademo and COMBO. IEEE Trans. Power Electron. 34(2), 1082-1098 (2019) https://doi.org/10.1109/TPEL.2018.2829211
  9. Cai, J., Zhao, X.: An on-board charger integrated power converter for EV switched reluctance motor drives. IEEE Trans. Ind. Electron. 68(5), 3683-3692 (2021) https://doi.org/10.1109/TIE.2020.2982112
  10. Ta, L., Dao, N., Lee, D.: High-efficiency hybrid LLC resonant converter for on-board chargers of plug-in electric vehicles. IEEE Trans. Power Electron. 35(8), 8324-8334 (2020) https://doi.org/10.1109/TPEL.2020.2968084
  11. Lee, D., Lee, B., Ahn, J., Kim, J.-Y., Kim, J.-K.: N combined OBC and LDC system for electric vehicles with 800 V battery. IEEE Trans. Ind. Electron. 68(10), 9938-9951 (2022)
  12. Tran, H.N., Le, T., Jeong, H., Kim, S., Choi, S.: A 300kHz, 63 kW/L ZVT DC-DC converter for 800-V fuel cell electric vehicles. IEEE Trans. Power Electron. 37(3), 2993-3006 (2022) https://doi.org/10.1109/TPEL.2021.3108815
  13. Hong, T., Qi, K., Zhao, X., Ambrosio, J., Gu, D.: A wide range unidirectional isolated DC-DC converter for fuel cell electric vehicles. IEEE Trans. Ind. Electron. 68(7), 5932-5943 (2021) https://doi.org/10.1109/TIE.2020.2998758
  14. Sun, X., Wu, X., Shen, Y., Li, X., Lu, Z.: A current-fed isolated bidirectional DC-DC converter. IEEE Trans. Power Electron. 32(9), 6882-6895 (2017) https://doi.org/10.1109/TPEL.2016.2623306
  15. Lin, B., Chen, J., Lee, Y., Chiang, H.: Analysis and implementation of a bidirectional ZVS dc-dc converter with active clamp. In: 2008 3rd IEEE Conference on Industrial Electronics and Applications, pp. 382-387, Singapore (2008)
  16. Rathore, A.K., Ur, P.: Analysis, design, and experimental results of novel snubberless bidirectional naturally clamped ZCS/ZVS current-fed half-bridge DC/DC converter for fuel cell vehicles. IEEE Trans. Ind. Electron. 60(10), 4482-4491 (2013) https://doi.org/10.1109/TIE.2012.2213563
  17. Park, J., Cho, B.: The zero Voltage switching (ZVS) critical conduction mode (CRM) buck Converter With tapped-inductor. IEEE Trans. Power Electron. 20(4), 762-774 (2005) https://doi.org/10.1109/TPEL.2005.850919
  18. Lyu, D., et al.: Extended of-time control for CRM boost converter based on piecewise equivalent capacitance model. IEEE Access 8, 155891-155901 (2022) https://doi.org/10.1109/ACCESS.2020.3019089
  19. Lee, M., Kim, J., Lai, J.: Digital-based critical conduction mode control for three-level boost PFC converter. IEEE Trans. Power Electron. 35(7), 7689-7701 (2020)