DOI QR코드

DOI QR Code

Fast transient response based on digital single-cycle charge regulation (SCCR) control

  • Lingyun Li (National ASIC System Engineering Research Center, Southeast University) ;
  • Shen Xu (National ASIC System Engineering Research Center, Southeast University) ;
  • Limin Yu (National ASIC System Engineering Research Center, Southeast University) ;
  • Weifeng Sun (National ASIC System Engineering Research Center, Southeast University)
  • Received : 2022.10.18
  • Accepted : 2023.03.06
  • Published : 2023.09.20

Abstract

The Buck converter is a commonly used voltage regulator (VR) structure that supplies power to the load devices and responds to load transients. In most of the applications, the VR is controlled by voltage or current mode control, and some nonlinear approaches are used to improve the transient response which brings more complexities to the closed loop design. To achieve a fast transient response without over-regulation under a load step transient, this paper proposes a digital single-cycle regulation (SCCR) controller, which comprised a fast path, a slow path, and a neutralization path. Unlike the conventional PID control, the neutralization path of the SCCR controller is used to offset the excessive energy change in the first cycle after a load step occurs, which makes the inductor current reach its new static condition in a shorter period of time. The mathematical model of the SCCR control is established in this paper and a scanning algorithm is proposed for the design of the compensator parameters. Experimental results are presented to verify the improvement of the transient response when compared to the conventional and nonlinear PID control, the recovery time is decreased by 64.3% and 43% for load step-up and step-down when compared with nonlinear PID control.

Keywords

Acknowledgement

This work is supported by National Natural Science Foundation of China (62171122) and Natural Science Foundation of Jiangsu Province (BK20201146).

References

  1. Zhou, M., Sun, Z., Low, Q., Siek, L.: Fast transient response DC-DC converter with start-up in-rush current control. Electron. Lett. 52(22), 1883-1885 (2016). https://doi.org/10.1049/el.2016.1427 
  2. Peterchev, A.V., Jinwen, X., Sanders, S.R.: Architecture and IC implementation of a digital VRM controller. IEEE Trans. Power Electron. 18(1), 356-364 (2003)  https://doi.org/10.1109/TPEL.2002.807099
  3. Maksimovic, D., Zane, R., Erickson, R.: Impact of digital control in power electronics. In: Power semiconductor devices and ICs, 2004. Proceedings. ISPSD '04. The 16th International Symposium on, pp. 13-22 (2004) 
  4. Morroni, J., et al.: Adaptive tuning of switched-mode power supplies operating in discontinuous and continuous conduction modes. IEEE Trans. Power Electron. 24(11), 2603-2611 (2009)  https://doi.org/10.1109/TPEL.2009.2029334
  5. Yu, L., Xu, S., Zhang, H., Shi, L., Sun, W.: An autotuning method based on system identification for digitally controlled synchronous buck converter. IEEE J. Emerg. Select. Top. Power Electron. 9(3), 3307-3321 (2021). https://doi.org/10.1109/JESTPE.2020.2993340 
  6. Ounnas, D., Guiza, D., Souf, Y., Dhaouadi, R., Bouden, A.: Design and Implementation of a digital PID controller for DC-DC Buck converter. In: 2019 1st International Conference on Sustainable Renewable Energy Systems and Applications (ICS-RESA), pp. 1-4, (2019) https://doi.org/10.1109/ICSRESA49121.2019.9182430. 
  7. Hekimoglu, B., Ekinci, S.: Optimally designed PID controller for a DC-DC Buck converter via a hybrid whale optimization algorithm with simulated annealing. Electrica 20(1), 19-27 (2020)  https://doi.org/10.5152/electrica.2020.19034
  8. Poon, N. K., Li, C. P., Pong, M. H.: A low cost DC-DC stepping inductance voltage regulator with fast transient loading response. In: APEC 2001. Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.01CH37181), pp 268-272 vol.1, (2001) https://doi.org/10.1109/APEC.2001.911659 
  9. Liu, X., Yang, P., Liu. Y.-F., Deng, J.: Modeling and simulation of parallel current mode controlled boost converter. In: 2008 3rd IEEE Conference on Industrial Electronics and Applications, Singapore, pp 2199-2204, (2008) https://doi.org/10.1109/ICIEA.2008.4582908 
  10. Liu, X., Ye, Y., Deng, J., Liu, Y.: Digital control and simulation of parallel current mode for Buck converter. In: The 2nd International Symposium on Power Electronics for Distributed Generation Systems, Hefei, pp 295-298, (2010) https://doi.org/10.1109/PEDG.2010.5545866 
  11. Asaishi, K., Tsukiji, N., Kobori, Y., Sunaga, Y., Takai, N., Kobayashi, H.: Hysteretic controlled buck converter with switching frequency insensitive to input/output voltage ratio. In: 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Hangzhou, pp 81-83, (2016) https://doi.org/10.1109/ICSICT.2016.7998844 
  12. Agarwal, S., Maity, A.: A 10-MHz current-mode fixed-frequency hysteretic controlled DC-DC converter with fast transient response. In: 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), Dallas, TX, USA, pp 945-948 (2019) https://doi.org/10.1109/MWSCAS.2019.8885176 
  13. Young, C. M.: Single-cycle charge regulator for digital control, US 8575910 B2 (2011) 
  14. Smedley, K.M., Cuk, S.: One-cycle control of switching converters. IEEE Trans. Power Electron. 10(6), 625-633 (1995). https://doi.org/10.1109/63.471281 
  15. Utomo, F. B., Purnama, I., Chin-Chi, P., Chiu, H.: Improved one-cycle controlled buck converter using Type-III compensator. In: 2016 8th International Conference on Information Technology and Electrical Engineering (ICITEE), Yogyakarta, pp 1-5, (2016) https://doi.org/10.1109/ICITEED.2016.7863223 
  16. Meyer, E., Zhang, Z., Liu, Y.: An optimal control method for buck converters using a practical capacitor charge balance technique. IEEE Trans. Power Electron. 23(4), 1802-1812 (2008). https://doi.org/10.1109/TPEL.2008.925201 
  17. Jia, L., Liu, Y.: Voltage-based charge balance controller suitable for both digital and analog implementations. IEEE Trans. Power Electron. 28(2), 930-944 (2013). https://doi.org/10.1109/TPEL.2012.2203340 
  18. Bartoli, M., Reatti, A., Kazimierczuk, M. K.: Open loop small-signal control-to-output transfer function of PWM buck converter for CCM: modeling and measurements. In: Proceedings of 8th Mediterranean Electrotechnical Conference on Industrial Applications in Power Systems, Computer Science and Telecommunications (MELECON 96), Bari, Italy, , pp. 1203-1206 vol. 3, (1996) https://doi.org/10.1109/MELCON.1996.551161 
  19. Yu, L., Qian, Y., Li, L., Yang, C., Xu, S., Sun, W.: Fast transient response based on single-cycle charge regulator (SCCR) control to realize fast recovery process. In: 2021 IEEE International Future Energy Electronics Conference (IFEEC), pp 1-5 (2021) https://doi.org/10.1109/IFEEC53238.2021.9661661 
  20. Hariharan, K., Kapat, S., Mukhopadhyay, S.: Constant on/of-time hybrid modulation in digital current-mode control using event-based sampling. IEEE Trans. Power Electron. 34(4), 3789-3803 (2019). https://doi.org/10.1109/TPEL.2018.2849608 
  21. Cortes, J., Svikovic, V., Alou, P., Oliver, J.A., Cobos, J.A.: $v^1$ $v^1$  $v^1$ concept: designing a voltage-mode control as current mode with near time-optimal response for buck-type converters. IEEE Trans. Power Electron. 30(10), 5829-5841 (2015). https://doi.org/10.1109/TPEL.2014.2368595 
  22. Hu, K.-Y., Tsai, C.-H., Tsai, C.-W.: Digital V2 constant on-time control buck converter with adaptive voltage positioning and automatic calibration mechanism. IEEE Trans. Power Electron. 36(6), 7178-7188 (2021). https://doi.org/10.1109/TPEL.2020.3039061 
  23. Hu, K.-Y., Yeh, W.-T., Tsai, C.-H., Tsai, C.-W.: Fully digital current mode constant on-time controlled buck converter with output voltage offset cancellation. IEEE Access 9, 162572-162580 (2021). https://doi.org/10.1109/ACCESS.2021.3133489