DOI QR코드

DOI QR Code

Preliminary study on the visual sensitivity of Oreochromis niloticus using LED light source for the aquaculture development in Uganda

  • Esther Kagoya ( Capture Fisheries and Biodiversity Conservation, National Fisheries Resources Research Institute) ;
  • Kyoungmi Kang ( International Graduate Program of Fisheries Science, Pukyong National University)
  • Received : 2023.03.30
  • Accepted : 2023.07.12
  • Published : 2023.08.31

Abstract

The visible threshold of Oreochromis niloticus responded to high light intensity under short wavelengths, whereas the response to low light intensity under long wavelengths was low, with a minimum visual threshold of 574 nm of LED lights. Movement distance of O. niloticus was dropped at 31℃ and increased abnormally at 37℃ under natural light. Comparing movement distance under red (622 nm) and green (518 nm) lights of LED, movement distance and swimming speed under red and green lights were higher than under natural light. However, the movement distance decreased rapidly at 31℃ under red light and lowest at 33℃ under green light. After that, there was a tendency to adapt to high water temperatures gradually. Consequently, red and green lights may be recommended for O. niloticus's aquaculture because the red and green lights have a positive effect on growth performance, survival rate, and metabolism, as shown in previous studies. It is necessary to control the water temperature below 32℃ because abnormal behavior above 32℃ revealed under red and green LED lights and natural light.

Keywords

References

  1. Azaza MS, Dhraief MN, Kraiem MM. Effects of water temperature on growth and sex ratio of juvenile Nile tilapia Oreochromis niloticus (Linnaeus) reared in geothermal waters in southern Tunisia. J Therm Biol. 2008;33:98-105. https://doi.org/10.1016/j.jtherbio.2007.05.007
  2. Beitinger TL. Behavioral reactions for the assessment of stress in fishes. J Great Lakes Res. 1990;16:495-528. https://doi.org/10.1016/S0380-1330(90)71443-8
  3. Benedict NR, Kim YR, Kim JM. Effects of different light wavel-engths on the growth of olive flounder (Paralichthys olivaceus). J Life Sci. 2019;29:311-7.
  4. Choe JR. Effect of various light spectra on the physiological responses of juvenile rock bream Oplegnathus fasciatus by changes in water temperature [M.S. thesis]. Busan: Korea Maritime and Ocean University; 2019.
  5. Choe JR, Shin YS, Choi JY, Kim TH, Jung MM, Choi CY. Effect of different wavelengths of light on the antioxidant and immunity status of juvenile rock bream, Oplegnathus fasciatus, exposed to thermal stress. Ocean Sci J. 2017;52:501-9. https://doi.org/10.1007/s12601-017-0051-2
  6. El-Sayed AFM, Kawanna M. Effects of photoperiod on the performance of farmed Nile tilapia Oreochromis niloticus: I. growth, feed utilization efficiency and survival of fry and fingerlings. Aquaculture. 2004;231:393-402. https://doi.org/10.1016/j.aquaculture.2003.11.012
  7. El-Sayed AFM, Kawanna M. Optimum water temperature boosts the growth performance of Nile tilapia (Oreochromis niloticus) fry reared in a recycling system. Aquac Res. 2008;39:670-2. https://doi.org/10.1111/j.1365-2109.2008.01915.x
  8. Elsbaay AM. Effects of photoperiod and different artificial light colors on Nile tilapia growth rate. J Agric Vet Sci. 2013;3:05-12. https://doi.org/10.9790/2380-0330512
  9. Fishery and aquaculture statistics [FAO]. The state of world fisheries and aquaculture 2022: towards blue transformation. Rome: FAO; 2022.
  10. Fishery and aquaculture statistics [FAO]. Global aquaculture production 1950-2020 [Internet]. FAO. 2023a [cited 2023 Mar 1]. https://www.fao.org/fishery/statistics-query/en/aquaculture/aquaculture_quantity
  11. Fishery and aquaculture statistics [FAO]. National aquaculture sector overview: Uganda [Internet]. FAO. 2023b [cited 2023 Mar 1]. https://www.fao.org/fishery/en/countrysector/ug/en?lang=en
  12. Guller U, Onalan S, Arabaci M, Karatas B, Yasar M, Kufrevioglu OI. Effects of different LED light spectra on rainbow trout (Oncorhynchus mykiss): in vivo evaluation of the antioxidant status. Fish Physiol Biochem. 2020;46:2169-80. https://doi.org/10.1007/s10695-020-00865-x
  13. Heo G, Kim MS, Shin HO. A study for behavior analysis of rockfish (Sebastes inermis) corresponding to the LED light by image analysis. J Korean Soc Fish Ocean Technol. 2016;52:96-102. https://doi.org/10.3796/KSFT.2016.52.2.096
  14. Heo G, Kim MS, Shin HO. Effect of water temperature and LED lights on the behavior of rock bream (Oplegnathus fasciatus). J Korean Soc Fish Ocean Technol. 2017;53:240-5. https://doi.org/10.3796/KSFT.2017.53.3.240
  15. Holland KN, Brill RW, Chang RKC. Horizontal and vertical movements of yellowfin and bigeye tuna associated with fish aggregating devices. Fish Bull. 1990;88:493-507.
  16. Ibanez AL, Torres-Vazquez T, Alvarez-Hernandez SH. The effect of high temperature on the growth performance of hybrid tilapia Oreochromis niloticus X Oreochromis aureus juveniles reared in a recycling system. Annu Res Rev Biol. 2019;32:1-8. https://doi.org/10.9734/arrb/2019/v32i130073
  17. Islam SMM, Sultana R, Imran M, Jannat MFT, Ashaf-Ud-Doulah M, Rohani MF, et al. Elevated temperature affects growth and hemato-biochemical parameters, inducing morphological abnormalities of erythrocytes in Nile tilapia Oreochromis niloticus. Aquac Res. 2020;51:4361-71. https://doi.org/10.1111/are.14780
  18. Jin G, Zhao J, Zhang Y, Liu G, Liu D, Zhu S, et al. Light spectrum preference of Nile tilapia (Oreochromis niloticus) under different hunger levels. Int J Agric Biol Eng. 2019;12:51-7. https://doi.org/10.25165/j.ijabe.20191205.4170
  19. Jobling M. Fish in aquaculture environments. In: Huntingford F, Jobling M, Kadri S, editors. Aquaculture and behavior. Chichester: Wiley-Blackwell; 2012. p. 36-64.
  20. Korea Law Information Center [KLIC]. Laboratory Animal Act (Act No. 18969) [Internet]. KLIC [cited 2023 June 19]. https://www.law.go.kr/LSW/eng/engLsSc.do?menuId=2§ion=lawNm&query=Laboratory+Animal+Act+&x=31&y=25#liBgcolor0
  21. Lee JY, Roh HJ, Lee Y, Park J, Kang HY, Kim YJ, et al. Optimization of green LED light intensity for accelerating wound healing in olive flounder Paralichthys olivaceus (Temminck et Schlegel). Aquaculture. 2023;569:739344.
  22. Lisney TJ, Studd E, Hawryshyn CW. Electrophysiological assessment of spectral sensitivity in adult Nile tilapia Oreochromis niloticus: evidence for violet sensitivity. J Exp Biol. 2010;213:1453-63. https://doi.org/10.1242/jeb.036897
  23. Lopez-Betancur D, Moreno I, Guerrero-Mendez C, Gomez-Melendez D, Macias MJ, Olvera-Olvera C. Effects of colored light on growth and nutritional composition of tilapia, and biofloc as a food source. Appl Sci. 2020;10:362.
  24. Maia CM, Volpato GL. Environmental light color affects the stress response of Nile tilapia. Zoology. 2013;116:64-6. https://doi.org/10.1016/j.zool.2012.08.001
  25. Martinez-Chavez CC, Navarrete-Ramirez P, Parke DV, Migaud H. Effects of continuous light and light intensity on the growth performance and gonadal development of Nile tilapia. Rev Bras Zootec. 2021;50:e20180275.
  26. Matsumoto T, Kawamura G. The eyes of the common carp and Nile tilapia are sensitive to near-infrared. Fish Sci. 2005;71:350-5. https://doi.org/10.1111/j.1444-2906.2005.00971.x
  27. Migaud H, Cowan M, Taylor J, Ferguson HW. The effect of spectral composition and light intensity on melatonin, stress and retinal damage in post-smolt Atlantic salmon, Salmo salar. Aquaculture. 2007;270:390-404. https://doi.org/10.1016/j.aquaculture.2007.04.064
  28. Minister of Agriculture, Animal Industry and Fisheries [MAAIF]. Aquaculture training manual for extension agents in Uganda [Internet]. MAAIF. 2020 [cited 2023 Mar 1]. https://www.agriculture.go.ug/wp-content/uploads/2020/03/MAAIF-AQUACULTURE-MANUAL-FINAL.pdf
  29. Mires D. Aquaculture and the aquatic environment: mutual impact and preventive management. Israeli J Aquac Bamidgeh. 1995;47:163-72.
  30. Nsubuga FW, Rautenbach H. Climate change and variability: a review of what is known and ought to be known for Uganda. Int J Clim Change Strateg Manag. 2018;10:752-71. https://doi.org/10.1108/IJCCSM-04-2017-0090
  31. Oyebola OO, Efitre J, Musinguzi L, Falaye AE. Potential adaptation strategies for climate change impact among flood-prone fish farmers in climate hotspot Uganda. Environ Dev Sustain. 2021;23:12761-90. https://doi.org/10.1007/s10668-020-01183-1
  32. Pandit NP, Nakamura M. Effect of high temperature on survival, growth and feed conversion ratio and Nile tilapia, Oreochromis niloticus. Our Nat. 2010;8:219-24. https://doi.org/10.3126/on.v8i1.4331
  33. Roh HJ, Kim A, Kang GS, Kim BS, Kim DH. Blue light-emitting diode light at 405 and 465 nm can inhibit a Miamiensis avidus infection in olive flounder, Paralichthys olivaceus. Aquaculture. 2018;493:176-85. https://doi.org/10.1016/j.aquaculture.2018.04.045
  34. Sabbah S, Hui J, Hauser FE, Nelson WA, Hawryshyn CW. Ontogeny in the visual system of Nile tilapia. J Exp Biol. 2012;215:2684-95. https://doi.org/10.1242/jeb.069922
  35. Shin HO, Heo MA, Heo G. The effect of LED light wavelength on the growth of fingerling Sebastes inermis. J Korean Soc Fish Ocean Technol. 2015;51:179-87. https://doi.org/10.3796/KSFT.2015.51.2.179
  36. Shrivastava S, Thakur U, Shrivastava L. Behavioural responses of Tilapia mossambica to water polluted with fly ash from coal: a laboratory study. Int J Biol. 2011;3:153-60.
  37. Stavenga DG, Smits RP, Hoenders BJ. Simple exponential functions describing the absorbance bands of visual pigment spectra. Vision Res. 1993;33:1011-7. https://doi.org/10.1016/0042-6989(93)90237-Q
  38. Stoskopf MK. Pain and analgesia in birds, reptiles, amphibians, and fish. Investig Ophthalmol Vis Sci. 1994;35:775-80.
  39. Tatemoto P, Serra M. Low luminosity reduces agonistic behaviour of Nile tilapia. J Appl Anim Welf Sci. 2021;24:434-41. https://doi.org/10.1080/10888705.2021.1888293
  40. Timucin OB, Arabaci M, Cuce F, Karatas B, Onalan S, Yasar M, et al. The effects of light sources with different spectral structures on ocular axial length in rainbow trout (Oncorhynchus mykiss). Exp Eye Res. 2016;151:212-21. https://doi.org/10.1016/j.exer.2016.08.018
  41. Tine M, Thiombane AB, Sonko F, Ndiaye ND, Diadhiou HD. Suitable temperature, stocking density and feeding rate for optimal growth of sex reversed fry of Nile tilapia Oreochromis niloticus (Senegal river strain). Agric Sci. 2022;13:897-915. https://doi.org/10.4236/as.2022.137056
  42. Villamizar N, Blanco-Vives B, Migaud H, Davie A, Carboni S, Sanchez-Vazquez FJ. Effects of light during early larval development of some aquacultured teleosts: a review. Aquaculture. 2011;315:86-94. https://doi.org/10.1016/j.aquaculture.2010.10.036
  43. Volpato GL, Barreto RE. Environmental blue light prevents stress in the fish Nile tilapia. Braz J Med Biol Res. 2001;34:1041-5. https://doi.org/10.1590/S0100-879X2001000800011
  44. Volpato GL, Bovi TS, de Freitas RHA, da Silva DF, Delicio HC, Giaquinto PC, et al. Red light stimulates feeding motivation in fish but does not improve growth. PLOS ONE. 2013;8:e59134.
  45. Wang K, Li K, Liu L, Tanase C, Mols R, Meer M. Effects of light intensity and photoperiod on the growth and stress response of juvenile Nile tilapia (Oreochromis niloticus) in a recirculating aquaculture system. Aquac Fish. 2023;8:85-90. https://doi.org/10.1016/j.aaf.2020.03.001
  46. World Bank Group [WBG]. Uganda [Internet]. WBG. 2023 [cited 2023 Mar 27]. https://climateknowledgeportal.worldbank.org/country/uganda/climate-data-historical
  47. Wu L, Wang Y, Li J, Song Z, Xu S, Song C, et al. Influence of light spectra on the performance of juvenile turbot (Scophthalmus maximus). Aquaculture. 2021;533:736191.
  48. Yi M, Zhai W, Wang M, Wang H, Liu Z, Gao F, et al. The welfare of Nile tilapia (Oreochromis niloticus, GIFT strain) juveniles cultured in different light spectra. Front Mar Sci. 2022;9:924110.