DOI QR코드

DOI QR Code

Phytoplankton composition in intensive shrimp ponds in Bac Lieu province, Vietnam

  • Received : 2023.04.30
  • Accepted : 2023.06.16
  • Published : 2023.08.31

Abstract

Algal overgrowth in shrimp culture ponds can affect the quality of the aquatic environment, thereby adversely affecting the shrimp and causing economic losses. The objective of this study was to evaluate the variation in phytoplankton composition in intensive shrimp ponds in Bac Lieu province, Vietnam. Phytoplankton samples were collected in three black tiger shrimp (Penaeus monodon) ponds and three whiteleg shrimp (Litopenaeus vannamei) ponds. The collected data were analyzed using SPSS and canonical correlation analysis softwares. In total, 75 species of phytoplankton were recorded in black tiger shrimp ponds and 64 species in whiteleg shrimp ponds. Diatoms had the highest species diversity with 29-30 species (39%-47%), followed by green algae with 9-19 species (14%-25%); species numbers of other phyla varied from 5-12 (8%-16%). The total number of phytoplankton species throughout the study varied from 34-50 species. Algal density was relatively high and ranged from 497,091-2,229,500 ind./L and 1,301,134-2,237,758 ind./L in black tiger shrimp and whiteleg shrimp ponds, respectively. The diatom density tended to increase during the final stage of the production cycle in black tiger shrimp ponds. Blue-green algae and dinoflagellates also increased in abundance at the end of the cycle, which can affect shrimp growth. Diatoms were significantly positively correlated with pH, salinity, total ammonia nitrogen, and nitrate (NO3-) concentrations (p < 0.05). Blue-green algae and dinoflagellates were positively correlated with salinity, phosphate (PO43-), and NO3-. Algal species diversity was lower in the whiteleg shrimp ponds than in the black tiger shrimp ponds. Several dominant algal genera were recorded in the shrimp ponds, including Nannochloropsis, Gyrosigma, Chaetoceros, Alexandrium, and Microcystis. The results of this study provide basic data for further investigations, and they contribute to the management of algae in brackish-water shrimp ponds.

Keywords

Acknowledgement

The authors are also thankful to the colleagues and students of Faculty of Aquatic Biology and Environmental Science, College of Aquaculture and Fisheries, Can Tho University for their support.

References

  1. American Public Health Association [APHA]. Standard methods for the examination of water and wastewater. 23rd ed. Washington, DC: American Public Health Association; 2017.
  2. An TN. Taxonomy of silica algae in the Vietnam Sea. Ha Noi: Science and Technics Publishing House; 1993.
  3. Arifin NB, Fakhri M, Yuniarti A, Hariati AM. Phytoplankton community at intensive cultivation system of whiteleg shrimp, Litopenaeus vannamei in Probolinggo, East Java. El-Hayah. 2017;6:79-85. https://doi.org/10.18860/elha.v6i3.4800
  4. Bellinger EG, Sigee DC. Freshwater algae: identification, enumeration and use as bioindicators. 2nd ed. New Delhi: John Wiley & Sons; 2015.
  5. Bisson MA, Kirst GO. Osmotic acclimation and turgor pressure regulation in algae. Naturwissenschaften. 1995;82:461-71. https://doi.org/10.1007/BF01131597
  6. Boyd CE. Water quality in ponds for aquaculture. Auburn, AL: Auburn University; 1990.
  7. Boyd CE, Tucker CS. Water quality and pond soil analyses for aquaculture. Alabama, AL: Auburn University; 1992.
  8. Cembella AD, Sullivan JJ, Boyer GL, Taylor FJR, Andersen RJ. Variation in paralytic shellfish toxin composition within the Protogonyaulax tamaronsis/catenella species complex: red tide dinoflagellates. Biochem Syst Ecol. 1987;15:171-86. https://doi.org/10.1016/0305-1978(87)90018-4
  9. Cremen MCM, Martinez-Goss MR, Corre VL Jr., Azanza RV. Phytoplankton bloom in commercial shrimp ponds using green-water technology. J Appl Phycol. 2007;19:615-24. https://doi.org/10.1007/s10811-007-9210-7
  10. Fernandes V, Elaine AS, Mamatha SS, Maria Judith BDG, Rayadurga AS. Dynamics and succession of plankton communities with changing nutrient levels in tropical culture ponds of whiteleg shrimp. Aquac Environ Interact. 2019;11:639-55. https://doi.org/10.3354/aei00341
  11. Gerami MH, Patimar R, Negarestan H, Jafarian H, Mortazavi MS. Temporal variability in macroinvertebrates diversity patterns and their relation with environmental factors. Biodiversitas J Biol Divers. 2016;17:36-43.
  12. Guerrero-galvan SR, Paez-osuna F, Ruiz-fernandez AC, Espinoza-Angulo R. Seasonal variation in the water quality and chlorophyll a of semi-intensive shrimp ponds in a subtropical environment. Hydrobiologia. 1998;391:33-45. https://doi.org/10.1023/A:1003590625379
  13. Hoff HF, Snell TW. Plankton culture manual. 2nd ed. Dade City, FL: Florida Aqua Farms; 1999.
  14. Hoogenhout H, Amesz J. Growth rates of photosynthetic microorganisms in laboratory cultures. Archiv Mikrobiol. 1965;50:10-25. https://doi.org/10.1007/BF00439783
  15. Keawtawee T, Fukami K, Songsangjinda P, Muangyao P. Nutrient, phytoplankton and harmful algal blooms in the shrimp culture ponds in Thailand. Kuroshio Sci. 2012;5:129-36.
  16. Lien NTK, Son VN, Giang HT. Water quality parameters and diatom composition in super-intensive whiteleg shrimp (Litopenaeus vannamei) ponds. Can Tho Univ J Sci. 2022;58:69-76.
  17. Marques JC, Salas F, Patricio J, Teixeira H, Neto JM. Ecological indicators for coastal and estuarine environmental assessment: a user guide. Southampton: WIT; 2009.
  18. Mortensen AM. Massive fish mortalities in the Faroe islands caused by a Gonyaulax excavata red tide. In: Proceedings of the Third International Conference on Toxic Dinoflagellates; 1985; St. Andrews, NB, Canada.
  19. Nova Consumer. Stable development of shrimp industry in the new situation. 2020 [cited 2021 Aug 29]. https://novaconsumer.com.vn/tin-tuc/tin-tuc-thi-truong/phat-trien-on-dinh-nganh-tom-trong-tinh-hinh-moi
  20. Oanh DTH, Giang HT, Lien NTK. Fluctuation of phytoplankton community in intensive white leg shrimp (Litopenaeus vannamei) ponds referring to shrimp health status. Can Tho Univ J Sci. 2014;2014:159-68.
  21. Ogata T, Kodama M. Ichthyotoxicity found in cultured media of Protogonyaulax spp. Mar Biol. 1986;92:31-4. https://doi.org/10.1007/BF00392742
  22. Omura T, Iwataki M, Borja VM. Marine phytoplankton of the Western Pacific. Tokyo: Kouseisha Kouseikaku; 2012.
  23. Ryther JH, Officer CB. Impact of nutrient enrichment on water uses. In: Neilson BJ, Cronin LE, editors. Estuaries and nutrients. Totowa, NJ: Humana; 1981. p. 247-61.
  24. Shaari AL, Surif M, Latiff FA, Omar WMW, Ahmad MN. Monitoring of water quality and microalgae species composition of Penaeus monodon ponds in Pulau Pinang, Malaysia. Trop Life Sci Res. 2011;22:51-69.
  25. Shirota A. The plankton of south Vietnam: fresh water and marine plankton. Japan: Overseas Technical Cooperation Agency; 1966.
  26. Simonsen S, Moller BL, Larsen J, Ravn H. Haemolytic activity of Alexandrium tamarense cells. In: Lassus P, editor. Harmful marine algal blooms. Paris: Lavoisier; 1995. p. 513-7.
  27. Tam LT, Cong NV, Anh HTL, Hong DD. Study on biological characteristics of the diatoms Thalassiosira weissflogii isolated in the central sea of Vietnam. In: National Biotechnology Conference; 2020; Hue; Viet Nam.
  28. Thang NV. Aquatic encyclopedia. Ha Noi: Agriculture Publishing House; 2007.
  29. Thanh ND. Phytoplankton composition in intensive whiteleg shrimp ponds in Ca Mau province [M.S. thesis]. Can Tho: Can Tho University; 2022.
  30. Tien DD. Taxonomy of Cyanobacteria in Vietnam. Ha Noi: Agriculture Publishing House; 1996.
  31. Tien DD, Hanh V. Identification of the order Chlorococcales. Ha Noi: Agriculture Publishing House; 1997.
  32. Tien HV, Gieo PH, Tung ND, Ngon TT. Distribution and species identification of Euglenophyta in shrimp farming ponds in an Bien district, Kien Giang province, Vietnam. Sci Tech J Agric Rural Dev. 2021;2:89-97.
  33. Tuyen NV. Biodiversity of algae in the inland waters of Vietnam. Ha Noi: Agriculture Publishing House; 2003.
  34. Ut VN, Oanh DTH. Aquatic plants and animals. Can Tho: Can Tho University; 2013.
  35. Yang W, Zhu J, Zheng C, Lukwambe B, Nicholaus R, Lu K, et al. Succession of phytoplankton community during intensive shrimp (Litopenaeus vannamei) cultivation and its effects on cultivation systems. Aquaculture. 2020;520:734733.
  36. Yusoff FM, Zubaidah MS, Matias HB, Kwan TS. Phytoplankton succession in intensive marine shrimp culture ponds treated with a commercial bacterial product. Aquac Res. 2002;33:269-78. https://doi.org/10.1046/j.1355-557x.2002.00671.x
  37. Zanella L, Vianello F. Microalgae of the genus Nannochloropsis: chemical composition and functional implications for human nutrition. J Funct Foods. 2020;68:103919.