DOI QR코드

DOI QR Code

Reactive oxygen species-specific characteristics of transient receptor potential ankyrin 1 receptor and its pain modulation

  • Hyun-Ji Yoon (Department of Physiology, Jeju National University College of Medicine) ;
  • Sung-Cherl Jung (Department of Physiology, Jeju National University College of Medicine)
  • Received : 2022.11.30
  • Accepted : 2023.01.04
  • Published : 2023.03.31

Abstract

Transient receptor potential ankyrin 1 (TRPA1) receptors are major polymodal nociceptors that generate primary pain responses in the peripheral nerve endings of the dorsal root ganglion neurons. Recently, we reported that the activation of TRPA1 receptors by reactive oxygen species (ROS) signaling, which is triggered by Ca2+ influx through T-type Ca2+ channels, contributes to prolonged pain responses induced by jellyfish toxin. In this review, we focus on the characteristics of the TRPA1 receptor involved in intracellular signaling as a secondary pain modulator. Unlike other transient receptor potential receptors, TRPA1 receptors can induce membrane depolarization by ROS without exogenous stimuli in peripheral and central sensory neurons. Therefore, it is important to identify the functional characteristics of TRPA1 receptors to understand pain modulation under several pathogenic conditions such as neuropathic pain syndromes and autoimmune diseases, which are mediated by oxidative signaling to cause chronic pain in the sensory system.

Keywords

Acknowledgement

This study was supported by a grant from the National Research Foundation of the Korean Government (NRF-2022R1I1A3063177).

References

  1. Dubin AE, Patapoutian A. Nociceptors: the sensors of the pain pathway. J Clin Invest 2010;120:3760-72. https://doi.org/10.1172/JCI42843
  2. Luo J, Feng J, Liu S, Walters ET, Hu H. Molecular and cellular mechanisms that initiate pain and itch. Cell Mol Life Sci 2015;72:3201-23. https://doi.org/10.1007/s00018-015-1904-4
  3. Vierck CJ, Whitsel BL, Favorov OV, Brown AW, Tommerdahl M. Role of primary somatosensory cortex in the coding of pain. Pain 2013;154:334-44. https://doi.org/10.1016/j.pain.2012.10.021
  4. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell 2009;139:267-84. https://doi.org/10.1016/j.cell.2009.09.028
  5. D'Oria R, Schipani R, Leonardini A, Natalicchio A, Perrini S, Cignarelli A, et al. The role of oxidative stress in cardiac disease: from physiological response to injury factor. Oxid Med Cell Longev 2020;2020:5732956.
  6. Mazzitelli M, Presto P, Antenucci N, Meltan S, Neugebauer V. Recent advances in the modulation of pain by the metabotropic glutamate receptors. Cells 2022;11:2608.
  7. Yeh TY, Luo IW, Hsieh YL, Tseng TJ, Chiang H, Hsieh ST. Peripheral neuropathic pain: from experimental models to potential therapeutic targets in dorsal root ganglion neurons. Cells 2020;9:2725.
  8. Vafaei AA, Safakhah HA, Jafari S, Tavasoli A, Rashidy-Pour A, Ghanbari A, et al. Role of cannabinoid receptors in crocin-induced hypoalgesia in neuropathic pain in rats. J Exp Pharmacol 2020;12:97-106. https://doi.org/10.2147/JEP.S250738
  9. Chu C, Levine E, Gear RW, Bogen O, Levine JD. Mitochondrial dependence of nerve growth factor-induced mechanical hyperalgesia. Pain 2011;152:1832-7. https://doi.org/10.1016/j.pain.2011.03.034
  10. Mickle AD, Shepherd AJ, Mohapatra DP. Nociceptive TRP channels: sensory detectors and transducers in multiple pain pathologies. Pharmaceuticals (Basel) 2016;9:72.
  11. Moore C, Gupta R, Jordt SE, Chen Y, Liedtke WB. Regulation of pain and itch by TRP channels. Neurosci Bull 2018;34:120-42. https://doi.org/10.1007/s12264-017-0200-8
  12. Kim HJ, Noh JW, Amarsanaa K, Jeon SC, Yang YS, Hwang NH, et al. Peripheral pain modulation of chrysaora pacifica jellyfish venom requires both Ca2+ influx and TRPA1 channel activation in rats. Neurotox Res 2020;38:900-13. https://doi.org/10.1007/s12640-020-00282-1
  13. Lapointe TK, Altier C. The role of TRPA1 in visceral inflammation and pain. Channels (Austin) 2011;5:525-9. https://doi.org/10.4161/chan.5.6.18016
  14. Atoyan R, Shander D, Botchkareva NV. Non-neuronal expression of transient receptor potential type A1 (TRPA1) in human skin. J Invest Dermatol 2009;129:2312-5. https://doi.org/10.1038/jid.2009.58
  15. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 2003;112:819-29. https://doi.org/10.1016/S0092-8674(03)00158-2
  16. Hamilton NB, Kolodziejczyk K, Kougioumtzidou E, Attwell D. Proton-gated Ca(2+)-permeable TRP channels damage myelin in conditions mimicking ischaemia. Nature 2016;529:523-7. https://doi.org/10.1038/nature16519
  17. De Logu F, Nassini R, Materazzi S, Carvalho Goncalves M, Nosi D, Rossi Degl'Innocenti D, et al. Schwann cell TRPA1 mediates neuroinflammation that sustains macrophage-dependent neuropathic pain in mice. Nat Commun 2017;8:1887.
  18. del Camino D, Murphy S, Heiry M, Barrett LB, Earley TJ, Cook CA, et al. TRPA1 contributes to cold hypersensitivity. J Neurosci 2010;30:15165-74. https://doi.org/10.1523/JNEUROSCI.2580-10.2010
  19. Sisignano M, Park CK, Angioni C, Zhang DD, von Hehn C, Cobos EJ, et al. 5,6-EET is released upon neuronal activity and induces mechanical pain hypersensitivity via TRPA1 on central afferent terminals. J Neurosci 2012;32:6364-72. https://doi.org/10.1523/JNEUROSCI.5793-11.2012
  20. Nishio N, Taniguchi W, Sugimura YK, Takiguchi N, Yamanaka M, Kiyoyuki Y, et al. Reactive oxygen species enhance excitatory synaptic transmission in rat spinal dorsal horn neurons by activating TRPA1 and TRPV1 channels. Neuroscience 2013;247:201-12. https://doi.org/10.1016/j.neuroscience.2013.05.023
  21. Hinman A, Chuang HH, Bautista DM, Julius D. TRP channel activation by reversible covalent modification. Proc Natl Acad Sci U S A 2006;103:19564-8. https://doi.org/10.1073/pnas.0609598103
  22. Miyake T, Nakamura S, Zhao M, So K, Inoue K, Numata T, et al. Cold sensitivity of TRPA1 is unveiled by the prolyl hydroxylation blockade-induced sensitization to ROS. Nat Commun 2016;7:12840.
  23. Nakagawa T, Kaneko S. Roles of transient receptor potential ankyrin 1 in oxaliplatin-induced peripheral neuropathy. Biol Pharm Bull 2017;40:947-53. https://doi.org/10.1248/bpb.b17-00243
  24. Diogenes A, Akopian AN, Hargreaves KM. NGF up-regulates TRPA1: implications for orofacial pain. J Dent Res 2007;86:550-5. https://doi.org/10.1177/154405910708600612
  25. Wang S, Dai Y, Fukuoka T, Yamanaka H, Kobayashi K, Obata K, et al. Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain. Brain 2008;131:1241-51. https://doi.org/10.1093/brain/awn060
  26. Malin S, Molliver D, Christianson JA, Schwartz ES, Cornuet P, Albers KM, et al. TRPV1 and TRPA1 function and modulation are target tissue dependent. J Neurosci 2011;31:10516-28. https://doi.org/10.1523/JNEUROSCI.2992-10.2011
  27. Sawada Y, Hosokawa H, Hori A, Matsumura K, Kobayashi S. Cold sensitivity of recombinant TRPA1 channels. Brain Res 2007;1160:39-46. https://doi.org/10.1016/j.brainres.2007.05.047
  28. Sculptoreanu A, Kullmann FA, Artim DE, Bazley FA, Schopfer F, Woodcock S, et al. Nitro-oleic acid inhibits firing and activates TRPV1- and TRPA1-mediated inward currents in dorsal root ganglion neurons from adult male rats. J Pharmacol Exp Ther 2010;333:883-95. https://doi.org/10.1124/jpet.109.163154
  29. Engel MA, Leffler A, Niedermirtl F, Babes A, Zimmermann K, Filipovic MR, et al. TRPA1 and substance P mediate colitis in mice. Gastroenterology 2011;141:1346-58. https://doi.org/10.1053/j.gastro.2011.07.002
  30. Hajna Z, Saghy E, Payrits M, Aubdool AA, Szoke E, Pozsgai G, et al. Capsaicin-sensitive sensory nerves mediate the cellular and microvascular effects of H2S via TRPA1 receptor activation and neuropeptide release. J Mol Neurosci 2016;60:157-70. https://doi.org/10.1007/s12031-016-0802-z
  31. Doerner JF, Gisselmann G, Hatt H, Wetzel CH. Transient receptor potential channel A1 is directly gated by calcium ions. J Biol Chem 2007;282:13180-9. https://doi.org/10.1074/jbc.M607849200
  32. Zurborg S, Yurgionas B, Jira JA, Caspani O, Heppenstall PA. Direct activation of the ion channel TRPA1 by Ca2+. Nat Neurosci 2007;10:277-9. https://doi.org/10.1038/nn1843
  33. McRory JE, Santi CM, Hamming KS, Mezeyova J, Sutton KG, Baillie DL, et al. Molecular and functional characterization of a family of rat brain T-type calcium channels. J Biol Chem 2001;276:3999-4011. https://doi.org/10.1074/jbc.M008215200
  34. Rose KE, Lunardi N, Boscolo A, Dong X, Erisir A, Jevtovic-Todorovic V, et al. Immunohistological demonstration of CaV3.2 T-type voltage-gated calcium channel expression in soma of dorsal root ganglion neurons and peripheral axons of rat and mouse. Neuroscience 2013;250:263-74. https://doi.org/10.1016/j.neuroscience.2013.07.005
  35. Francois A, Schuetter N, Laffray S, Sanguesa J, Pizzoccaro A, Dubel S, et al. The low-threshold calcium channel Cav3.2 determines low-threshold mechanoreceptor function. Cell Rep 2015;10:370-82. https://doi.org/10.1016/j.celrep.2014.12.042
  36. Watanabe M, Ueda T, Shibata Y, Kumamoto N, Shimada S, Ugawa S. Expression and regulation of Cav3.2 T-type calcium channels during inflammatory hyperalgesia in mouse dorsal root ganglion neurons. PLoS One 2015;10:e0127572.
  37. Li Y, Tatsui CE, Rhines LD, North RY, Harrison DS, Cassidy RM, et al. Dorsal root ganglion neurons become hyperexcitable and increase expression of voltage-gated T-type calcium channels (Cav3.2) in paclitaxel-induced peripheral neuropathy. Pain 2017;158:417-29. https://doi.org/10.1097/j.pain.0000000000000774
  38. Materazzi S, Nassini R, Andre E, Campi B, Amadesi S, Trevisani M, et al. Cox-dependent fatty acid metabolites cause pain through activation of the irritant receptor TRPA1. Proc Natl Acad Sci U S A 2008;105:12045-50. https://doi.org/10.1073/pnas.0802354105
  39. Taylor-Clark TE, Undem BJ, Macglashan DW Jr, Ghatta S, Carr MJ, McAlexander MA. Prostaglandin-induced activation of nociceptive neurons via direct interaction with transient receptor potential A1 (TRPA1). Mol Pharmacol 2008;73:274-81. https://doi.org/10.1124/mol.107.040832
  40. Chen J, Hackos DH. TRPA1 as a drug target--promise and challenges. Naunyn Schmiedebergs Arch Pharmacol 2015;388:451-63. https://doi.org/10.1007/s00210-015-1088-3
  41. Chow CW, Herrera Abreu MT, Suzuki T, Downey GP. Oxidative stress and acute lung injury. Am J Respir Cell Mol Biol 2003;29:427-31. https://doi.org/10.1165/rcmb.F278
  42. Andersson DA, Gentry C, Moss S, Bevan S. Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci 2008;28:2485-94. https://doi.org/10.1523/JNEUROSCI.5369-07.2008
  43. Bessac BF, Sivula M, von Hehn CA, Escalera J, Cohn L, Jordt SE. TRPA1 is a major oxidant sensor in murine airway sensory neurons. J Clin Invest 2008;118:1899-910. https://doi.org/10.1172/JCI34192
  44. Viana F. TRPA1 channels: molecular sentinels of cellular stress and tissue damage. J Physiol 2016;594:4151-69. https://doi.org/10.1113/JP270935
  45. Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 2006;124:1269-82. https://doi.org/10.1016/j.cell.2006.02.023
  46. Wu LJ, Sweet TB, Clapham DE. International union of basic and clinical pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol Rev 2010;62:381-404. https://doi.org/10.1124/pr.110.002725
  47. Takahashi N, Kuwaki T, Kiyonaka S, Numata T, Kozai D, Mizuno Y, et al. TRPA1 underlies a sensing mechanism for O2. Nat Chem Biol 2011;7:701-11. https://doi.org/10.1038/nchembio.640
  48. Kashio M, Tominaga M. Redox-sensitive TRP channels: TRPA1 and TRPM2. In: Khalid MAA, editor. Redox: principles and advanced applications. London: IntechOpen; 2017. pp. 203-223.
  49. Jiang L, Ma D, Grubb BD, Wang M. ROS/TRPA1/CGRP signaling mediates cortical spreading depression. J Headache Pain 2019;20:25.
  50. Cavaletti G, Marmiroli P. Chemotherapy-induced peripheral neurotoxicity. Curr Opin Neurol 2015;28:500-7. https://doi.org/10.1097/WCO.0000000000000234
  51. Trevisan G, Materazzi S, Fusi C, Altomare A, Aldini G, Lodovici M, et al. Novel therapeutic strategy to prevent chemotherapy-induced persistent sensory neuropathy by TRPA1 blockade. Cancer Res 2013;73:3120-31. https://doi.org/10.1158/0008-5472.CAN-12-4370
  52. Nesuashvili L, Hadley SH, Bahia PK, Taylor-Clark TE. Sensory nerve terminal mitochondrial dysfunction activates airway sensory nerves via transient receptor potential (TRP) channels. Mol Pharmacol 2013;83:1007-19. https://doi.org/10.1124/mol.112.084319
  53. Stanford KR, Hadley SH, Barannikov I, Ajmo JM, Bahia PK, Taylor-Clark TE. Antimycin A-induced mitochondrial dysfunction activates vagal sensory neurons via ROS-dependent activation of TRPA1 and ROS-independent activation of TRPV1. Brain Res 2019;1715:94-105. https://doi.org/10.1016/j.brainres.2019.03.029
  54. Ko HK, Lin AH, Perng DW, Lee TS, Kou YR. Lung epithelial TRPA1 mediates lipopolysaccharide-induced lung inflammation in bronchial epithelial cells and mice. Front Physiol 2020;11:596314.
  55. Meseguer V, Alpizar YA, Luis E, Tajada S, Denlinger B, Fajardo O, et al. TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nat Commun 2014;5:3125.