DOI QR코드

DOI QR Code

Recent progress in vaccine development targeting pre-clinical human toxoplasmosis

  • Ki-Back Chu (Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute, School of Medicine, Kyung Hee University) ;
  • Fu-Shi Quan (Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute, School of Medicine, Kyung Hee University)
  • 투고 : 2022.08.15
  • 심사 : 2023.05.30
  • 발행 : 2023.08.31

초록

Toxoplasma gondii is an intracellular parasitic organism affecting all warm-blooded vertebrates. Due to the unavailability of commercialized human T. gondii vaccine, many studies have been reported investigating the protective efficacy of pre-clinical T. gondii vaccines expressing diverse antigens. Careful antigen selection and implementing multifarious immunization strategies could enhance protection against toxoplasmosis in animal models. Although none of the available vaccines could remove the tissue-dwelling parasites from the host organism, findings from these pre-clinical toxoplasmosis vaccine studies highlighted their developmental potential and provided insights into rational vaccine design. We herein explored the progress of T. gondii vaccine development using DNA, protein subunit, and virus-like particle vaccine platforms. Specifically, we summarized the findings from the pre-clinical toxoplasmosis vaccine studies involving T. gondii challenge infection in mice published in the past 5 years.

키워드

과제정보

This research was supported by the National Research Foundation of Korea (NRF) (2018R1A6A1A03025124).

참고문헌

  1. Montoya JG, Liesenfeld O. Toxoplasmosis. Lancet 2004;363(9425):1965-1976. https://doi.org/10.1016/S0140-6736(04)16412-X
  2. Robert-Gangneux F, Darde ML. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev 2012;25(2):264-296. https://doi.org/10.1128/cmr.05013-11
  3. Jones JL, Lopez A, Wilson M, Schulkin J, Gibbs R. Congenital toxoplasmosis: a review. Obstet Gynecol Surv 2001;56(5):296-305. https://doi.org/10.1097/00006254-200105000-00025
  4. Wang JL, Zhang NZ, Li TT, He JJ, Elsheikha HM, et al. Advances in the development of anti-Toxoplasma gondii vaccines: challenges, opportunities, and perspectives. Trends Parasitol 2019;35(3):239-253. https://doi.org/10.1016/j.pt.2019.01.005
  5. Silva LA, Reis-Cunha JL, Bartholomeu DC, Vitor RW. Genetic polymorphisms and phenotypic profiles of sulfadiazine-resistant and sensitive Toxoplasma gondii isolates obtained from newborns with congenital Toxoplasmosis in Minas Gerais, Brazil. PLoS One 2017;12(1):e0170689. https://doi.org/10.1371/journal.pone.0170689
  6. Aspinall TV, Joynson DH, Guy E, Hyde JE, Sims PF. The molecular basis of sulfonamide resistance in Toxoplasma gondii and implications for the clinical management of toxoplasmosis. J Infect Dis 2002;185(11):1637-1643. https://doi.org/10.1086/340577
  7. Silva LA, Fernandes MD, Machado AS, Reis-Cunha JL, Bartholomeu DC, et al. Efficacy of sulfadiazine and pyrimetamine for treatment of experimental toxoplasmosis with strains obtained from human cases of congenital disease in Brazil. Exp Parasitol 2019;202:7-14. https://doi.org/10.1016/j.exppara.2019.05.001
  8. Dubey JP. Toxoplasmosis in sheep--the last 20 years. Vet Parasitol 2009;163(1-2):1-14. https://doi.org/10.1016/j.vetpar.2009.02.026.
  9. Innes EA, Hamilton C, Garcia JL, Chryssafidis A, Smith D. A one health approach to vaccines against Toxoplasma gondii. Food Waterborne Parasitol 2019;15:e00053. https://doi.org/10.1016/j.fawpar.2019.e00053
  10. Havelaar AH, Kirk MD, Torgerson PR, Gibb HJ, Hald T, et al. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med 2015;12(12):e1001923. https://doi.org/10.1371/journal.pmed.1001923
  11. Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol 2021;21(2):83-100. https://doi.org/10.1038/s41577-020-00479-7
  12. Cyster JG, Allen CDC. B cell responses: cell interaction dynamics and decisions. Cell 2019;177(3):524-540. https://doi.org/10.1016/j.cell.2019.03.016
  13. Tang DC, DeVit M, Johnston SA. Genetic immunization is a simple method for eliciting an immune response. Nature 1992;356(6365):152-154. https://doi.org/10.1038/356152a0
  14. Li L, Petrovsky N. Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev Vaccines 2016;15(3):313-329. https://doi.org/10.1586/14760584.2016.1124762
  15. Cui Z. DNA vaccine. Adv Genet 2005;54:257-289. https://doi.org/10.1016/s0065-2660(05)54011-2
  16. Wurtele H, Little KC, Chartrand P. Illegitimate DNA integration in mammalian cells. Gene Ther 2003;10(21):1791-1799. https://doi.org/10.1038/sj.gt.3302074
  17. Faurez F, Dory D, Le Moigne V, Gravier R, Jestin A. Biosafety of DNA vaccines: new generation of DNA vectors and current knowledge on the fate of plasmids after injection. Vaccine 2010;28(23):3888-3895. https://doi.org/10.1016/j.vaccine.2010.03.040
  18. Lee J, Arun Kumar S, Jhan YY, Bishop CJ. Engineering DNA vaccines against infectious diseases. Acta Biomater 2018;80:31-47. https://doi.org/10.1016/j.actbio.2018.08.033
  19. Zhu Y, Xu Y, Hong L, Zhou C, Chen J. Immunization with a DNA vaccine encoding the Toxoplasma gondii's GRA39 prolongs survival and reduce brain cyst formation in a murine model. Front Microbiol 2021;12:630682. https://doi.org/10.3389/fmicb.2021.630682
  20. Zheng B, Lou D, Ding J, Zhuo X, Ding H, et al. GRA24-based DNA vaccine prolongs survival in mice challenged with a virulent Toxoplasma gondii strain. Front Immunol 2019;10:418. https://doi.org/10.3389/fimmu.2019.00418
  21. Zheng B, Ding J, Lou D, Tong Q, Zhuo X, et al. The virulence-related MYR1 protein of Toxoplasma gondii as a novel DNA vaccine against toxoplasmosis in mice. Front Microbiol 2019;10:734. https://doi.org/10.3389/fmicb.2019.00734
  22. Sun HC, Huang J, Fu Y, Hao LL, Liu X, et al. Enhancing immune responses to a DNA vaccine encoding Toxoplasma gondii GRA7 using calcium phosphate nanoparticles as an adjuvant. Front Cell Infect Microbiol 2021;11:787635. https://doi.org/10.3389/fcimb.2021.787635
  23. Zhu YC, Ma LJ, Zhang JL, Liu JF, He Y, et al. Protective immunity induced by TgMIC5 and TgMIC16 DNA vaccines against toxoplasmosis. Front Cell Infect Microbiol 2021;11:686004. https://doi.org/10.3389/fcimb.2021.686004
  24. Zhang D, Jiang N, Chen Q. Vaccination with recombinant adenoviruses expressing Toxoplasma gondii MIC3, ROP9, and SAG2 provide protective immunity against acute toxoplasmosis in mice. Vaccine 2019;37(8):1118-1125. https://doi.org/10.1016/j.vaccine.2018.12.044
  25. Zepp F. Principles of vaccine design-Lessons from nature. Vaccine 2010;28(suppl):C14-C24. https://doi.org/10.1016/j.vaccine.2010.07.020
  26. Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 2014;5:172. https://doi.org/10.3389/fmicb.2014.00172.
  27. Ducker C, Ratnam M, Shaw PE, Layfield R. Comparative analysis of protein expression systems and PTM landscape in the study of transcription factor ELK-1. Protein Expr Purif 2022;203:106216. https://doi.org/10.1016/j.pep.2022.106216
  28. D'Amico C, Fontana F, Cheng R, Santos HA. Development of vaccine formulations: past, present, and future. Drug Deliv Transl Res 2021;11(2):353-372. https://doi.org/10.1007/s13346-021-00924-7
  29. Zhao G, Song X, Kong X, Zhang N, Qu S, et al. Immunization with Toxoplasma gondii aspartic protease 3 increases survival time of infected mice. Acta Trop 2017;171:17-23. https://doi.org/10.1016/j.actatropica.2017.02.030
  30. Fereig RM, Kuroda Y, Terkawi MA, Mahmoud ME, Nishikawa Y. Immunization with Toxoplasma gondii peroxiredoxin 1 induces protective immunity against toxoplasmosis in mice. PLoS One 2017;12(4):e0176324. https://doi.org/10.1371/journal.pone.0176324
  31. Liu F, Wu M, Wang J, Wen H, An R, et al. Protective effect against toxoplasmosis in BALB/c mice vaccinated with recombinant Toxoplasma gondii MIF, CDPK3, and 14-3-3 protein cocktail vaccine. Front Immunol 2021;12:755792. https://doi.org/10.3389/fimmu.2021.755792
  32. Chu KB, Quan FS. Virus-like particle vaccines against respiratory viruses and protozoan parasites. Curr Top Microbiol Immunol 2021;433:77-106. https://doi.org/10.1007/82_2021_232
  33. Bachmann MF, Rohrer UH, Kundig TM, Burki K, Hengartner H, et al. The influence of antigen organization on B cell responsiveness. Science 1993;262(5138):1448-1451. https://doi.org/10.1126/science.8248784
  34. Brune KD, Howarth M. New routes and opportunities for modular construction of particulate vaccines: stick, click, and glue. Front Immunol 2018;9:1432. https://doi.org/10.3389/fimmu.2018.01432
  35. Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, et al. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 2008;38(5):1404-1 413. https://doi.org/10.1002/eji.200737984
  36. Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 2010;10(11):787-796. https://doi.org/10.1038/nri2868
  37. Lee SH, Kim AR, Lee DH, Rubino I, Choi HJ, et al. Protection induced by virus-like particles containing Toxoplasma gondii microneme protein 8 against highly virulent RH strain of Toxoplasma gondii infection. PLoS One 2017;12(4):e0175644. https://doi.org/10.1371/journal.pone.0175644
  38. Kang HJ, Chu KB, Lee SH, Kim MJ, Park H, et al. Virus-like particle vaccine containing Toxoplasma gondii rhoptry protein 13 induces protection against T. gondii ME49 infection in mice. Korean J Parasitol 2019;57(5):543-547. https://doi.org/10.3347/kjp.2019.57.5.543
  39. Kang HJ, Lee SH, Chu KB, Lee DH, Quan FS. Virus-like particles expressing Toxoplasma gondii rhoptry protein 18 induces better protection than rhoptry protein 4 against T. gondii infection. Korean J Parasitol 2018;56(5):429-435. https://doi.org/10.3347/kjp.2018.56.5.429
  40. Kang HJ, Chu KB, Lee SH, Kim MJ, Park H, et al. Toxoplasma gondii virus-like particle vaccination alleviates inflammatory response in the brain upon T. gondii infection. Parasite Immunol 2020;42(6):e12716. https://doi.org/10.1111/pim.12716
  41. Kang HJ, Lee SH, Kim MJ, Chu KB, Lee DH, et al. Influenza virus-like particles presenting both Toxoplasma gondii ROP4 and ROP13 enhance protection against T. gondii infection. Pharmaceutics 2019;11(7):342. https://doi.org/10.3390/pharmaceutics11070342
  42. Lee SH, Kang HJ, Lee DH, Kang SM, Quan FS. Virus-like particle vaccines expressing Toxoplasma gondii rhoptry protein 18 and microneme protein 8 provide enhanced protection. Vaccine 2018;36(38):5692-5700. https://doi.org/10.1016/j.vaccine.2018.08.016
  43. Lee SH, Kang HJ, Lee DH, Quan FS. Protective immunity induced by incorporating multiple antigenic proteins of Toxoplasma gondii into influenza virus-like particles. Front Immunol 2018;9:3073. https://doi.org/10.3389/fimmu.2018.03073
  44. Lee SH, Chu KB, Kang HJ, Quan FS. Virus-like particles containing multiple antigenic proteins of Toxoplasma gondii induce memory T cell and B cell responses. PLoS One 2019;14(8):e0220865. https://doi.org/10.1371/journal.pone.0220865
  45. Guo J, Zhou A, Sun X, Sha W, Ai K, et al. Immunogenicity of a virus-like-particle vaccine containing multiple antigenic epitopes of Toxoplasma gondii against acute and chronic toxoplasmosis in mice. Front Immunol 2019;10:592. https://doi.org/10.3389/fimmu.2019.00592
  46. Kang HJ, Chu KB, Kim MJ, Lee SH, Park H, et al. Protective immunity induced by CpG ODN-adjuvanted virus-like particles containing Toxoplasma gondii proteins. Parasite Immunol 2021;43(1):e12799. https://doi.org/10.1111/pim.12799
  47. Kang HJ, Chu KB, Kim MJ, Park H, Jin H, et al. Evaluation of CpG-ODN-Adjuvanted Toxoplasma gondii virus-like particle vaccine upon one, two, and three immunizations. Pharmaceutics 2020;12(10):989. https://doi.org/10.3390/pharmaceutics12100989