DOI QR코드

DOI QR Code

Korean Red Ginseng extract ameliorates demyelination by inhibiting infiltration and activation of immune cells in cuprizone-administrated mice

  • Min Jung Lee (Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University) ;
  • Jong Hee Choi (Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University) ;
  • Tae Woo Kwon (Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University) ;
  • Hyo-Sung Jo (Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University) ;
  • Yujeong Ha (Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University) ;
  • Seung-Yeol Nah (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University) ;
  • Ik-Hyun Cho (Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University)
  • 투고 : 2022.08.08
  • 심사 : 2023.05.09
  • 발행 : 2023.09.01

초록

Background: Korean Red Ginseng (KRG), the steamed root of Panax ginseng, has pharmacological activities for immunological and neurodegenerative disorders. But, the role of KRGE in multiple sclerosis (MS) remains unclear. Purpose: To determine whether KRG extract (KRGE) could inhibit demyelination in corpus callosum (CC) of cuprizone (CPZ)-induced murine model of MS Methods: Male adult mice were fed with a standard chow diet or a chow diet supplemented with 0.2% (w/w) CPZ ad libitum for six weeks to induce demyelination while were simultaneously administered with distilled water (DW) alone or KRGE-DW (0.004%, 0.02 and 0.1% of KRGE) by drinking. Results: Administration with KRGE-DW alleviated demyelination and oligodendrocyte degeneration associated with inhibition of infiltration and activation of resident microglia and monocyte-derived macrophages as well as downregulation of proinflammatory mediators in the CC of CPZ-fed mice. KRGE-DW also attenuated the level of infiltration of Th1 and Th17) cells, in line with inhibited Mrna expression of IFN-γ and IL-17, respectively, in the CC. These positive effects of KRGE-DW mitigated behavioral dysfunction based on elevated plus maze and the rotarod tests. Conclusion: The results strongly suggest that KRGE-DW may inhibit CPZ-induced demyelination due to its oligodendroglial protective and anti-inflammatory activities by inhibiting infiltration/activation of immune cells. Thus, KRGE might have potential in therapeutic intervention for MS.

키워드

과제정보

This research was supported by grant from the Korean Society of Ginseng (2018, 2022).

참고문헌

  1. Lassmann H, van Horssen J. The molecular basis of neurodegeneration in multiple sclerosis. FEBS Lett 2011;585:3715-23. https://doi.org/10.1016/j.febslet.2011.08.004
  2. Afshar B, Khalifehzadeh-Esfahani Z, Seyfizadeh N, Rezaei Danbaran G, Hemmatzadeh M, Mohammadi H. The role of immune regulatory molecules in multiple sclerosis. J Neuroimmunol 2019;337:577061.
  3. Huang WJ, Chen WW, Zhang X. Multiple sclerosis: pathology, diagnosis and treatments. Exp Ther Med 2017;13:3163-6. https://doi.org/10.3892/etm.2017.4410
  4. Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol 2015;15:545-58. https://doi.org/10.1038/nri3871
  5. Brambilla R. The contribution of astrocytes to the neuroinflammatory response in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol 2019.
  6. Axisa PP, Hafler DA. Multiple sclerosis: genetics, biomarkers, treatments. Curr Opin Neurol 2016;29:345-53.
  7. Mahdavian S, Dike U, Bryant A, Davison C, Ghazvini P, Hill A. Multiple sclerosis: a supplement on the disease state, current therapies, and investigational treatments. J Pharm Pract 2010;23:91-100. https://doi.org/10.1177/0897190009360022
  8. Bryant J, Clegg A, Milne R. Systematic review of immunomodulatory drugs for the treatment of people with multiple sclerosis: is there good quality evidence on effectiveness and cost? J Neurol Neurosurg Psychiatry 2001;70:574-9. https://doi.org/10.1136/jnnp.70.5.574
  9. Steinman L. The discovery of natalizumab, a potent therapeutic for multiple sclerosis. J Cell Biol 2012;199:413-6. https://doi.org/10.1083/jcb.201207175
  10. Pelletier D, Hafler DA. Fingolimod for multiple sclerosis. N Engl J Med 2012;366:339-47. https://doi.org/10.1056/NEJMct1101691
  11. Li R. Natural product-based drug discovery. Med Res Rev 2016;36:3.
  12. Yu SE, Mwesige B, Yi YS, Yoo BC. Ginsenosides: the need to move forward from bench to clinical trials. J Ginseng Res 2019;43:361-7. https://doi.org/10.1016/j.jgr.2018.09.001
  13. Won HJ, Kim HI, Park T, Kim H, Jo K, Jeon H, et al. Non-clinical pharmacokinetic behavior of ginsenosides. J Ginseng Res 2019;43:354-60. https://doi.org/10.1016/j.jgr.2018.06.001
  14. Cho I. Effects of Panax ginseng in neurodegenerative diseases. J Ginseng Res 2012;36:342-53. https://doi.org/10.5142/jgr.2012.36.4.342
  15. Hyun SH, Kim SW, Seo HW, Youn SH, Kyung JS, Lee YY, et al. Physiological and pharmacological features of the non-saponin components in Korean Red Ginseng. J Ginseng Res 2020;44:527-37. https://doi.org/10.1016/j.jgr.2020.01.005
  16. Hyun SH, Ahn HY, Kim HJ, Kim SW, So SH, In G, et al. Immuno-enhancement effects of Korean Red Ginseng in healthy adults: a randomized, double-blind, placebo-controlled trial. J Ginseng Res 2021;45:191-8. https://doi.org/10.1016/j.jgr.2020.08.003
  17. Ratan ZA, Haidere MF, Hong YH, Park SH, Lee JO, Lee J, et al. Pharmacological potential of ginseng and its major component ginsenosides. J Ginseng Res 2021;45:199-210. https://doi.org/10.1016/j.jgr.2020.02.004
  18. Yang Y, Ju Z, Yang Y, Zhang Y, Yang L, Wang Z. Phytochemical analysis of Panax species: a review. J Ginseng Res 2021;45:1-21. https://doi.org/10.1016/j.jgr.2019.12.009
  19. Choi JH, Jang M, Oh S, Nah SY, Cho IH. Multi-target protective effects of gintonin in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Mediated model of Parkinson's disease via lysophosphatidic acid receptors. Front Pharmacol 2018;9:515.
  20. Jang M, Choi JH, Chang Y, Lee SJ, Nah SY, Cho IH. Gintonin, a ginseng-derived ingredient, as a novel therapeutic strategy for Huntington's disease: activation of the Nrf2 pathway through lysophosphatidic acid receptors. Brain Behav Immun 2019;80:146-62. https://doi.org/10.1016/j.bbi.2019.03.001
  21. Hwang SH, Shin EJ, Shin TJ, Lee BH, Choi SH, Kang J, et al. Gintonin, a ginsengderived lysophosphatidic acid receptor ligand, attenuates Alzheimer's disease-related neuropathies: involvement of non-amyloidogenic processing. J Alzheimers Dis 2012;31:207-23. https://doi.org/10.3233/JAD-2012-120439
  22. Lee MJ, Jang M, Choi J, Chang BS, Kim do Y, Kim SH, et al. Korean red ginseng and ginsenoside-Rb1/-Rg1 alleviate experimental autoimmune encephalomyelitis by suppressing Th1 and Th17 cells and upregulating regulatory T cells. Mol Neurobiol 2016;53:1977-2002. https://doi.org/10.1007/s12035-015-9131-4
  23. Lee MJ, Chang BJ, Oh S, Nah SY, Cho IH. Korean Red Ginseng mitigates spinal demyelination in a model of acute multiple sclerosis by downregulating p38 mitogen-activated protein kinase and nuclear factor-kappaB signaling pathways. J Ginseng Res 2018;42:436-46. https://doi.org/10.1016/j.jgr.2017.04.013
  24. Kipp M, Clarner T, Dang J, Copray S, Beyer C. The cuprizone animal model: new insights into an old story. Acta Neuropathol 2009;118:723-36. https://doi.org/10.1007/s00401-009-0591-3
  25. Praet J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P. Cellular and molecular neuropathology of the cuprizone mouse model: clinical relevance for multiple sclerosis. Neurosci Biobehav Rev 2014;47:485-505. https://doi.org/10.1016/j.neubiorev.2014.10.004
  26. An J, Yin JJ, He Y, Sui RX, Miao Q, Wang Q, et al. Temporal and spatial dynamics of astroglial reaction and immune response in cuprizone-induced demyelination. Neurotox Res 2020;37:587-601. https://doi.org/10.1007/s12640-019-00129-4
  27. Landis SC, Amara SG, Asadullah K, Austin CP, Blumenstein R, Bradley EW, et al. A call for transparent reporting to optimize the predictive value of preclinical research. Nature 2012;490:187-91. https://doi.org/10.1038/nature11556
  28. Kim YS, Woo JY, Han CK, Chang IM. Safety analysis of Panax ginseng in randomized clinical trials: a systematic review. Medicines (Basel) 2015;2:106-26. https://doi.org/10.3390/medicines2020106
  29. Lee MJ, Jang M, Choi J, Chang BS, Kim DY, Kim SH, et al. Korean red ginseng and ginsenoside-Rb1/-rg1 alleviate experimental autoimmune encephalomyelitis by suppressing Th1 and Th17 cells and upregulating regulatory T cells. Mol Neurobiol 2016;53:1977-2002. https://doi.org/10.1007/s12035-015-9131-4
  30. Lee MJ, Jang M, Choi J, Lee G, Min HJ, Chung WS, et al. Bee venom acupuncture alleviates experimental autoimmune encephalomyelitis by upregulating regulatory T cells and suppressing Th1 and Th17 responses. Mol Neurobiol 2016;53:1419-45. https://doi.org/10.1007/s12035-014-9012-2
  31. Lee MJ, Bing SJ, Choi J, Jang M, Lee G, Lee H, et al. IKKbeta-mediated inflammatory myeloid cell activation exacerbates experimental autoimmune encephalomyelitis by potentiating Th1/Th17 cell activation and compromising blood brain barrier. Mol Neurodegener 2016;11:54.
  32. Choi JH, Lee MJ, Jang M, Kim EJ, Shim I, Kim HJ, et al. An oriental medicine, hyungbangpaedok-san attenuates motor paralysis in an experimental model of multiple sclerosis by regulating the T cell response. PLoS One 2015;10:e0138592.
  33. Choi JH, Oh J, Lee MJ, Ko SG, Nah SY, Cho IH. Gintonin mitigates experimental autoimmune encephalomyelitis by stabilization of Nrf2 signaling via stimulation of lysophosphatidic acid receptors. Brain Behav Immun 2021;93:384-98. https://doi.org/10.1016/j.bbi.2020.12.004
  34. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262
  35. Kulkarni SK, Sharma AC. Elevated plus-maze: a novel psychobehavioral tool to measure anxiety in rodents. Methods Find Exp Clin Pharmacol 1991;13:573-7.
  36. Wang J, Sui RX, Miao Q, Wang Q, Song LJ, Yu JZ, et al. Effect of Fasudil on remyelination following cuprizone-induced demyelination. CNS Neurosci Ther 2020;26:76-89. https://doi.org/10.1111/cns.13154
  37. Bohlen M, Cameron A, Metten P, Crabbe JC, Wahlsten D. Calibration of rotational acceleration for the rotarod test of rodent motor coordination. J Neurosci Methods 2009;178:10-4. https://doi.org/10.1016/j.jneumeth.2008.11.001
  38. Choi JH, Jang M, Nah SY, Oh S, Cho IH. Multitarget effects of Korean Red Ginseng in animal model of Parkinson's disease: antiapoptosis, antioxidant, antiinflammation, and maintenance of blood-brain barrier integrity. J Ginseng Res 2018;42:379-88. https://doi.org/10.1016/j.jgr.2018.01.002
  39. Lee SM, Bae BS, Park HW, Ahn NG, Cho BG, Cho YL, et al. Characterization of Korean red ginseng (Panax ginseng meyer): history, preparation method, and chemical composition. J Ginseng Res 2015;39:384-91. https://doi.org/10.1016/j.jgr.2015.04.009
  40. Burrows DJ, McGown A, Jain SA, De Felice M, Ramesh TM, Sharrack B, et al. Animal models of multiple sclerosis: from rodents to zebrafish. Mult Scler 2019;25:306-24. https://doi.org/10.1177/1352458518805246
  41. Torkildsen O, Brunborg LA, Myhr KM, Bo L. The cuprizone model for demyelination. Acta Neurol Scand Suppl 2008;188:72-6. https://doi.org/10.1111/j.1600-0404.2008.01036.x
  42. Hoglund RA, Maghazachi AA. Multiple sclerosis and the role of immune cells. World J Exp Med 2014;4:27-37. https://doi.org/10.5493/wjem.v4.i3.27
  43. Rodgers JM, Miller SD. Cytokine control of inflammation and repair in the pathology of multiple sclerosis. Yale J Biol Med 2012;85:447-68.
  44. Ohsawa K, Imai Y, Sasaki Y, Kohsaka S. Microglia/macrophage-specific protein Iba1 binds to fimbrin and enhances its actin-bundling activity. J Neurochem 2004;88:844-56. https://doi.org/10.1046/j.1471-4159.2003.02213.x
  45. Sedgwick JD, Schwender S, Imrich H, Dorries R, Butcher GW, ter Meulen V. Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci U S A 1991;88:7438-42. https://doi.org/10.1073/pnas.88.16.7438
  46. Gudi V, Gingele S, Skripuletz T, Stangel M. Glial response during cuprizone-induced de- and remyelination in the CNS: lessons learned. Front Cell Neurosci 2014;8:73.
  47. Castillo-Rodriguez MLA, Gingele S, Schroder LJ, Mollenkamp T, Stangel M, Skripuletz T, et al. Astroglial and oligodendroglial markers in the cuprizone animal model for de- and remyelination. Histochem Cell Biol 2022;158:15-38. https://doi.org/10.1007/s00418-022-02096-y
  48. Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KH. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol 2010;162:1-11. https://doi.org/10.1111/j.1365-2249.2010.04143.x
  49. Franco-Pons N, Torrente M, Colomina MT, Vilella E. Behavioral deficits in the cuprizone-induced murine model of demyelination/remyelination. Toxicol Lett 2007;169:205-13. https://doi.org/10.1016/j.toxlet.2007.01.010
  50. Omotoso GO, Olajide OJ, Gbadamosi IT, Adebayo JO, Enaibe BU, Akinola OB, et al. Cuprizone toxicity and Garcinia kola biflavonoid complex activity on hippocampal morphology and neurobehaviour. Heliyon 2019;5:e02102.
  51. Wang J, Wang J, Wang J, Yang B, Weng Q, He Q. Targeting microglia and macrophages: a potential treatment strategy for multiple sclerosis. Front Pharmacol 2019;10:286.
  52. Sen MK, Mahns DA, Coorssen JR, Shortland PJ. The roles of microglia and astrocytes in phagocytosis and myelination: insights from the cuprizone model of multiple sclerosis. Glia 2022;70:1215-50. https://doi.org/10.1002/glia.24148
  53. Rawji KS, Yong VW. The benefits and detriments of macrophages/microglia in models of multiple sclerosis. Clin Dev Immunol 2013;2013:948976.
  54. Mojaverrostami S, Bojnordi MN, Ghasemi-Kasman M, Ebrahimzadeh MA, Hamidabadi HG. A review of herbal therapy in multiple sclerosis. Adv Pharm Bull 2018;8:575-90. https://doi.org/10.15171/apb.2018.066
  55. Baxi EG, DeBruin J, Tosi DM, Grishkan IV, Smith MD, Kirby LA, et al. Transfer of myelin-reactive th17 cells impairs endogenous remyelination in the central nervous system of cuprizone-fed mice. J Neurosci 2015;35:8626-39. https://doi.org/10.1523/JNEUROSCI.3817-14.2015
  56. Arellano G, Acuna E, Reyes LI, Ottum PA, De Sarno P, Villarroel L, et al. Th1 and Th17 cells and associated cytokines discriminate among clinically isolated syndrome and multiple sclerosis phenotypes. Front Immunol 2017;8:753.