DOI QR코드

DOI QR Code

Effect of anti-skin disorders of ginsenosides- A Systematic Review

  • Lele Cong (Department of Dermatology, China-Japan Union Hospital of Jilin University) ;
  • Jinli Ma (Key Laboratory of Lymphatic Surgery Jilin Province, Jilin Engineering Laboratory for Lymphatic Surgery, China-Japan Union Hospital of Jilin University) ;
  • Yundong Zhang (Key Laboratory of Lymphatic Surgery Jilin Province, Jilin Engineering Laboratory for Lymphatic Surgery, China-Japan Union Hospital of Jilin University) ;
  • Yifa Zhou (School of Life Sciences, Northeast Normal University) ;
  • Xianling Cong (Department of Biobank, China-Japan Union Hospital of Jilin University) ;
  • Miao Hao (Scientific Research Center, China-Japan Union Hospital of Jilin University)
  • Received : 2022.08.22
  • Accepted : 2023.04.18
  • Published : 2023.09.01

Abstract

Ginsenosides are bioactive components of Panax ginseng with many functions such as anti-aging, anti-oxidation, anti-inflammatory, anti-fatigue, and anti-tumor. Ginsenosides are categorized into dammarane, oleanene, and ocotillol type tricyclic triterpenoids based on the aglycon structure. Based on the sugar moiety linked to C-3, C-20, and C-6, C-20, dammarane type was divided into protopanaxadiol (PPD) and protopanaxatriol (PPT). The effects of ginsenosides on skin disorders are noteworthy. They play antiaging roles by enhancing immune function, resisting melanin formation, inhibiting oxidation, and elevating the concentration of collagen and hyaluronic acid. Thus, ginsenosides have previously been widely used to resist skin diseases and aging. This review details the role of ginsenosides in the anti-skin aging process from mechanisms and experimental research.

Keywords

Acknowledgement

This research was supported by Department of Science and Technology of Jilin Province (grant no. YDZJ202201ZYTS021, 20190103086JH).

References

  1. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol 2011 Apr;9(4):244-53. https://doi.org/10.1038/nrmicro2537
  2. Nybaek H, Jemec GB. Skin problems in stoma patients. J Eur Acad Dermatol Venereol 2010 Mar;24(3):249-57. https://doi.org/10.1111/j.1468-3083.2010.03566.x
  3. Gu Y, Han J, Jiang C, Zhang Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res Rev 2020 May;59:101036.
  4. Vaz VVA, Jardim da Silva L, Geihs MA, Maciel FE, Nery LEM, Vargas MA. Single and repeated low-dose UVB radiation exposures affect the visual system. J Photochem Photobiol B 2020 Aug;209:111941.
  5. Pittayapruek P, Meephansan J, Prapapan O, Komine M, Ohtsuki M. Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int J Mol Sci 2016 Jun 2;17(6):868.
  6. Christian L, Bahudhanapati H, Wei S. Extracellular metalloproteinases in neural crest development and craniofacial morphogenesis. Crit Rev Biochem Mol Biol 2013 Nov-Dec;48(6):544-60. https://doi.org/10.3109/10409238.2013.838203
  7. Tuter G, Kurtis, B, Serdar M, Aykan T, Okyay K, Yucel A, Toyman U, Pinar S, Cemri M, Cengel A, et al. Effects of scaling and root planing and sub-antimicrobial dose doxycycline on oral and systemic biomarkers of disease in patients with both chronic periodontitis and coronary artery disease. J Clin Periodontol 2007 Aug;34(8):673-81. https://doi.org/10.1111/j.1600-051X.2007.01104.x
  8. Homma T, Fujii J. Application of glutathione as anti-oxidative and anti-aging drugs. Curr Drug Metab 2015;16(7):560-71. https://doi.org/10.2174/1389200216666151015114515
  9. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006 Mar 10;160(1):1-40. https://doi.org/10.1016/j.cbi.2005.12.009
  10. Amaro H, Sanchez M, Bautista T, Cox R. Social vulnerabilities for substance use: stressors, socially toxic environments, and discrimination and racism. Neuropharmacology 2021 May 1;188:108518.
  11. Kim J, Cho SY, Kim SH, Cho D, Kim S, Park CW, Shimizu T, Cho JY, Seo DB, Shin SS. Effects of Korean ginseng berry on skin antipigmentation and antiaging via FoxO3a activation. J Ginseng Res 2017 Jul;41(3):277-83. https://doi.org/10.1016/j.jgr.2016.05.005
  12. Wang Y, Zeng T, Li H, Wang Y, Wang J, Yuan H. Structural characterization and hypoglycemic function of polysaccharides from Cordyceps cicadae. Molecules 2023 Jan 5;28(2):526.
  13. Jing H, Li J, Zhang J, Wang W, Li S, Ren Z, Gao Z, Song X, Wang X, Jia L. The antioxidative and anti-aging effects of acidic- and alkalic-extractable mycelium polysaccharides by Agrocybe aegerita (Brig.) Sing. Int J Biol Macromol 2018 Jan;106:1270-8. https://doi.org/10.1016/j.ijbiomac.2017.08.138
  14. Wang H, Zhang S, Zhai L, Sun L, Zhao D, Wang Z, Li X. Ginsenoside extract from ginseng extends lifespan and health span in Caenorhabditis elegans. Food Funct 2021 Aug 2;12(15):6793-808. https://doi.org/10.1039/D1FO00576F
  15. Metwaly AM, Lianlian Z, Luqi H, Deqiang D. Black ginseng and its saponins: preparation, phytochemistry and pharmacological effects. Molecules 2019 May 14;24(10):1856.
  16. Kang KS, Lee YJ, Park JH, Yokozawa T. The effects of glycine and L-arginine on heat stability of ginsenoside Rb1. Biol Pharm Bull 2007 Oct;30(10):1975-8. https://doi.org/10.1248/bpb.30.1975
  17. Yang L, Zou H, Gao Y, Luo J, Xie X, Meng W, Zhou H, Tan Z. Insights into gastrointestinal microbiota-generated ginsenoside metabolites and their bioactivities. Drug Metab. Rev. 2020;52:125-38. https://doi.org/10.1080/03602532.2020.1714645
  18. Liu CY, Zhou RX, Sun CK, Jin YH, Yu HS, Zhang TY, Xu LQ, Jin FX. Preparation of minor ginsenosides C-Mc, C-Y, F2, and C-K from American ginseng PPD-ginsenoside using special ginsenosidase type-I from Aspergillus Niger g.848. J Ginseng Res 2015 Jul;39(3):221-9. https://doi.org/10.1016/j.jgr.2014.12.003
  19. Piao XM, Huo Y, Kang JP, Mathiyalagan R, Zhang H, Yang DU, Kim M, Yang DC, Kang SC, Wang YP. Diversity of ginsenoside profiles produced by various processing technologies. Molecules 2020 Sep 24;25(19):4390.
  20. Majeed F, Malik FZ, Ahmed Z, Afreen A, Afzal MN, Khalid N. Ginseng phytochemicals as therapeutics in oncology: recent perspectives. Biomed Pharmacother 2018 Apr;100:52-63. https://doi.org/10.1016/j.biopha.2018.01.155
  21. Bai L, Gao J, Wei F, Zhao J, Wang D, Wei J. Therapeutic potential of ginsenosides as an adjuvant treatment for diabetes. Front Pharmacol 2018 May 1;9:423.
  22. Zhang L, Virgous C, Si H. Ginseng and obesity: observations and understanding in cultured cells, animals and humans. J Nutr Biochem 2017 Jun;44:1-10. https://doi.org/10.1016/j.jnutbio.2016.11.010
  23. Man S, Luo C, Yan M, Zhao G, Ma L, Gao W. Treatment for liver cancer: from sorafenib to natural products. Eur J Med Chem 2021 Nov 15;224:113690.
  24. Kim YH, Park HR, Cha SY, Lee SH, Jo JW, Go JN, Lee KH, Lee SY, Shin SS. Effect of red ginseng NaturalGEL on skin aging. J Ginseng Res 2020 Jan;44(1):115-22. https://doi.org/10.1016/j.jgr.2018.09.006
  25. Cheng Y, Shen LH, Zhang JT. Anti-amnestic and anti-aging effects of ginsenoside Rg1 and Rb1 and its mechanism of action. Acta Pharmacol Sin 2005 Feb;26(2):143-9. https://doi.org/10.1111/j.1745-7254.2005.00034.x
  26. Lim TG, Jeon AJ, Yoon JH, Song D, Kim JE, Kwon JY, Kim JR, Kang NJ, Park JS, Yeom MH, et al. 20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol, a metabolite of ginsenoside Rb1, enhances the production of hyaluronic acid through the activation of ERK and Akt mediated by Src tyrosin kinase in human keratinocytes. Int J Mol Med 2015 May;35(5):1388-94. https://doi.org/10.3892/ijmm.2015.2121
  27. Salama R, Sadaie M, Hoare M, Narita M. Cellular senescence and its effector programs. Genes Dev 2014;28:99-114. https://doi.org/10.1101/gad.235184.113
  28. Liu DH, Chen YM, Liu Y, Hao BS, Zhou B, Wu L, Wang M, Chen L, Wu WK, Qian XX. Rb1 protects endothelial cells from hydrogen peroxide-induced cell senescence by modulating redox status. Biol Pharm Bull 2011;34(7):1072-7. https://doi.org/10.1248/bpb.34.1072
  29. Song Z, Liu Y, Hao B, Yu S, Zhang H, Liu D, Zhou B, Wu L, Wang M, Xiong Z, et al. Ginsenoside Rb1 prevents H2O2-induced HUVEC senescence by stimulating sirtuin-1 pathway. PLoS One 2014 Nov 11;9(11):e112699.
  30. Oh SJ, Kim K, Lim CJ. Protective properties of ginsenoside Rb1 against UV-B radiation-induced oxidative stress in human dermal keratinocytes. Pharmazie 2015 Jun;70(6):381-7.
  31. Cavinato M, Jansen-Durr P. Molecular mechanisms of UVB-induced senescence of dermal fibroblasts and its relevance for photoaging of the human skin. Exp Gerontol 2017 Aug;94:78-82. https://doi.org/10.1016/j.exger.2017.01.009
  32. Cai BX, Jin SL, Luo D, Lin XF, Gao J. Ginsenoside Rb1 suppresses ultraviolet radiation-induced apoptosis by inducing DNA repair. Biol Pharm Bull 2009 May;32(5):837-41. https://doi.org/10.1248/bpb.32.837
  33. Lee KT, Jung TW, Lee HJ, Kim SG, Shin YS, Whang WK. The antidiabetic effect of ginsenoside Rb2 via activation of AMPK. Arch Pharm Res 2011;34:1201-8. https://doi.org/10.1007/s12272-011-0719-6
  34. Fujimoto J, Sakaguchi H, Aoki I, Toyoki H, Khatun S, Tamaya T. Inhibitory effect of gin- senoside-Rb2 on invasiveness of uterine endometrial cancer cells to the basement mem- brane. Eur J Gynaecol Oncol 2001;22:339-41.
  35. Sato K, Mochizuki M, Saiki I, Yoo YC, Samukawa K, Azuma I. Inhibition of tumor angio- genesis and metastasis by a saponin of Panax ginseng, ginsenoside-Rb2. Biol Pharm Bull 1994;17:635-9. https://doi.org/10.1248/bpb.17.635
  36. Yoo YC, Lee J, Park SR, Nam KY, Cho YH, Choi JE. Protective effect of ginsenoside-Rb2 from Korean red ginseng on the lethal infection of haemagglutinating virus of Japan in mice. J Ginseng Res 2013;37:80-6. https://doi.org/10.5142/jgr.2013.37.80
  37. Oh SJ, Kim K, Lim CJ. Suppressive properties of ginsenoside Rb2, a protopanaxadiol-type ginseng saponin, on reactive oxygen species and matrix metalloproteinase-2 in UV-B-irradiated human dermal keratinocytes. Biosci Biotechnol Biochem 2015;79(7):1075-81. https://doi.org/10.1080/09168451.2015.1020752
  38. Kim YH, Park KH, Rho HM. Transcriptional activation of the Cu,Zn-superoxide dis- mutase gene through the AP2 site by ginsen- oside Rb2 extracted from a medicinal plant, Panax ginseng. J Biol Chem 1996;271:24539-43. https://doi.org/10.1074/jbc.271.40.24539
  39. Oh SJ, Kim K, Lim CJ. Suppressive properties of ginsenoside Rb2, a protopanaxadiol-type ginseng saponin, on reactive oxygen species and matrix metalloproteinase-2 in UV-B-irradiated human dermal keratinocytes. Biosci Biotechnol Biochem 2015;79(7):1075-81. https://doi.org/10.1080/09168451.2015.1020752
  40. Choi S. Epidermis proliferative effect of the Panax ginseng ginsenoside Rb2. Arch Pharm Res 2002 Feb;25(1):71-6. https://doi.org/10.1007/BF02975265
  41. Khavkin J, Ellis DA. Aging skin: histology, physiology, and pathology. Facial Plast Surg Clin North Am 2011 May;19(2):229-34. https://doi.org/10.1016/j.fsc.2011.04.003
  42. Harkey MR, Henderson GL, Gershwin ME, Stern JS, Hackman RM. Variability in commercial ginseng products: an analysis of 25 preparations. Am J Clin Nutr 2001;73:1101-6. https://doi.org/10.1093/ajcn/73.6.1101
  43. Oh Y, Lim HW, Park KH, Huang YH, Yoon JY, Kim K, Lim CJ. Ginsenoside Rc protects against UVB-induced photooxidative damage in epidermal keratinocytes. Mol Med Rep 2017 Sep;16(3):2907-14. https://doi.org/10.3892/mmr.2017.6943
  44. Kim WK, Song SY, Oh WK, et al. Wound-healing effect of ginsenoside Rd from leaves of Panax ginseng via cyclic AMP- dependent protein kinase pathway. Eur J Pharmacol 2013;702:285-93. https://doi.org/10.1016/j.ejphar.2013.01.048
  45. Li Z, Li JJ, Gu LJ, Zhang DL, Wang YB, Sung CK. Ginsenosides Rb1 and Rd regulate proliferation of mature keratinocytes through induction of p63 expression in hair follicles. Phytother Res 2013 Jul;27(7):1095-101. https://doi.org/10.1002/ptr.4828
  46. Ngo HTT, Hwang E, Seo SA, Yang JE, Nguyen QTN, Do NQ, Yi TH. Mixture of enzyme-processed Panax ginseng and Gastrodia elata extract prevents UVB-induced decrease of procollagen type 1 and increase of MMP-1 and IL-6 in human dermal fibroblasts. Biosci Biotechnol Biochem 2020 Nov;84(11):2327-36. https://doi.org/10.1080/09168451.2020.1793657
  47. Shin HS, Park SY, Hwang ES, Lee DG, Song HG, Mavlonov GT, Yi TH. The inductive effect of ginsenoside F2 on hair growth by altering the WNT signal pathway in telogen mouse skin. Eur J Pharmacol 2014 May 5;730:82-9. https://doi.org/10.1016/j.ejphar.2014.02.024
  48. Choi WY, Lim HW, Lim CJ. Anti-inflammatory, antioxidative and matrix metalloproteinase inhibitory properties of 20(R)-ginsenoside Rh2 in cultured macrophages and keratinocytes. J Pharm Pharmacol 2013 Feb;65(2):310-6. https://doi.org/10.1111/j.2042-7158.2012.01598.x
  49. Shin HS, Park SY, Hwang ES, Lee DG, Mavlonov GT, Yi TH. Ginsenoside F2 reduces hair loss by controlling apoptosis through the sterol regulatory element-binding protein cleavage activating protein and transforming growth factor-β pathways in a dihydrotestosterone-induced mouse model. Biol Pharm Bull 2014;37(5):755-63. https://doi.org/10.1248/bpb.b13-00771
  50. Park SH, Seo W, Eun HS, Kim SY, Jo E, Kim MH, Choi WM, Lee JH, Shim YR, Cui CH, et al. Protective effects of ginsenoside F2 on 12-O-tetradecanoylphorbol-13-acetate-induced skin inflammation in mice. Biochem Biophys Res Commun 2016 Sep 30;478(4):1713-9. https://doi.org/10.1016/j.bbrc.2016.09.009
  51. Lim CJ, Choi WY, Jung HJ. Stereoselective skin anti-photoaging properties of ginsenoside Rg3 in UV-B-irradiated keratinocytes. Biol Pharm Bull 2014;37(10):1583-90. https://doi.org/10.1248/bpb.b14-00167
  52. Jang IS, Jo E, Park SJ, Baek SJ, Hwang IH, Kang HM, Lee JH, Kwon J, Son J, Kwon HJ, et al. Proteomic analyses reveal that ginsenoside Rg3(S) partially reverses cellular senescence in human dermal fibroblasts by inducing peroxiredoxin. J Ginseng Res 2020 Jan;44(1):50-7. https://doi.org/10.1016/j.jgr.2018.07.008
  53. Rhee SG, Kang SW, Jeong W, Chang TS, Wang KS, Woo HA. Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol 2005;17:183-9. https://doi.org/10.1016/j.ceb.2005.02.004
  54. Lee H, Hong Y, Tran Q, Cho H, Kim M, Kim C, Kwon SH, Park S, Park J, Park J. A new role for the ginsenoside RG3 in antiaging via mitochondria function in ultraviolet-irradiated human dermal fibroblasts. J Ginseng Res 2019 Jul;43(3):431-41. https://doi.org/10.1016/j.jgr.2018.07.003
  55. Tao R, Coleman MC, Pennington JD, Ozden O, Park SH, Jiang H, Kim HS, Flynn CR, Hill S, Hayes McDonald W, et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell 2010;40:893-904. https://doi.org/10.1016/j.molcel.2010.12.013
  56. Yang KE, Jang HJ, Hwang IH, Hong EM, Lee MG, Lee S, Jang IS, Choi JS. Stereoisomer-specific ginsenoside 20(S)-Rg3 reverses replicative senescence of human diploid fibroblasts via Akt-mTOR-Sirtuin signaling. J Ginseng Res 2020 Mar;44(2):341-9. https://doi.org/10.1016/j.jgr.2019.08.002
  57. Cheng L, Sun X, Hu C, Jin R, Sun B, Shi Y, Zhang L, Cui W, Zhang Y. In vivo inhibition of hypertrophic scars by implantable ginsenoside-Rg3-loaded electrospun fibrous membranes. Acta Biomater 2013 Dec;9(12):9461-73. https://doi.org/10.1016/j.actbio.2013.07.040
  58. Xu T, Yang R, Ma X, Chen W, Liu S, Liu X, Cai X, Xu H, Chi B. Bionic poly(γ-glutamic acid) electrospun fibrous scaffolds for preventing hypertrophic scars. Adv Healthc Mater 2019 Jul;8(13):e1900123.
  59. Zhao L, Wang L, Chang L, Hou Y, Wei C, Wu Y. Ginsenoside CK-loaded self-nanomicellizing solid dispersion with enhanced solubility and oral bioavailability. Pharm Dev Technol 2020 Nov;25(9):1127-38. https://doi.org/10.1080/10837450.2020.1800730
  60. Yang XD, Yang YY, Ouyang DS, Yang GP. A review of biotransformation and pharmacology of ginsenoside compound K. Fitoterapia 2015 Jan;100:208-20. https://doi.org/10.1016/j.fitote.2014.11.019
  61. Kim S, Kang BY, Cho SY, Sung DS, Chang HK, Yeom MH, Kim DH, Sim YC, Lee YS. Compound K induces expression of hyaluronan synthase 2 gene in transformed human keratinocytes and increases hyaluronan in hair-less mouse skin. Biochem. Biophys. Res. Commun. 2004;316(2):348-55. https://doi.org/10.1016/j.bbrc.2004.02.046
  62. Cai BX, Luo D, Lin XF, Gao J. Compound K suppresses ultraviolet radiation-induced apoptosis by inducing DNA repair in human keratinocytes. Arch Pharm. Res. (Seoul) 2008;31(11):1483-8.
  63. He D, Sun J, Zhu X, Nian S, Liu J. Compound K increases type I procollagen level and decreases matrix metalloproteinase-1 activity and level in ultraviolet-A-irradiated fibroblasts. J Formos Med Assoc 2011 Mar;110(3):153-60. https://doi.org/10.1016/S0929-6646(11)60025-9
  64. Shin DJ, Kim JE, Lim TG, Jeong EH, Park G, Kang NJ, Park JS, Yeom MH, Oh DK, Bode AM, et al. 20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol suppresses UV-Induced MMP-1 expression through AMPK-mediated mTOR inhibition as a downstream of the PKA-LKB1 pathway. J Cell Biochem 2014 Oct;115(10):1702-11. https://doi.org/10.1002/jcb.24833
  65. Kim E, Kim D, Yoo S, Hong YH, Han SY, Jeong S, Jeong D, Kim JH, Cho JY, Park J. The skin protective effects of compound K, a metabolite of ginsenoside Rb1 from Panax ginseng. J Ginseng Res 2018 Apr;42(2):218-24. https://doi.org/10.1016/j.jgr.2017.03.007
  66. Benhadou F, Mintoff D, Del Marmol V, Psoriasis. Keratinocytes or immune cells - which is the trigger? Dermatology 2019;235(2):1-10. https://doi.org/10.1159/000493260
  67. Fan H, Wang Y, Zhang X, Chen J, Zhou Q, Yu Z, Chen Y, Chen Z, Gu J, Shi Y. Ginsenoside compound K ameliorates imiquimod-induced psoriasis-like dermatitis through inhibiting REG3A/RegIIIγ expression in keratinocytes. Biochem Biophys Res Commun 2019 Aug 6;515(4):665-71. https://doi.org/10.1016/j.bbrc.2019.06.007
  68. Bae EA, Han MJ, Kim EJ, Kim DH. Transformation of ginseng saponins to ginsenoside Rh2 by acids and human intestinal bacteria and biological activities of their transformants. Arch Pharm Res 2004 Jan;27(1):61-7. https://doi.org/10.1007/BF02980048
  69. Oh SJ, Lee S, Choi WY, Lim CJ. Skin anti-photoaging properties of ginsenoside Rh2 epimers in UV-B-irradiated human keratinocyte cells. J Biosci 2014 Sep;39(4):673-82. https://doi.org/10.1007/s12038-014-9460-x
  70. Choi WY, Lim HW, Lim CJ. Anti-inflammatory, antioxidative and matrix metalloproteinase inhibitory properties of 20(R)-ginsenoside Rh2 in cultured macrophages and keratinocytes. J Pharm Pharmacol 2013 Feb;65(2):310-6. https://doi.org/10.1111/j.2042-7158.2012.01598.x
  71. Zhou J, Gao Y, Yi X, Ding Y. Ginsenoside Rh2 suppresses neovascularization in xenograft psoriasis model. Cell Physiol Biochem 2015;36(3):980-7. https://doi.org/10.1159/000430272
  72. Sun M, Zhu C, Long J, Lu C, Pan X, Wu C. PLGA microsphere-based composite hydrogel for dual delivery of ciprofloxacin and ginsenoside Rh2 to treat Staphylococcus aureus-induced skin infections. Drug Deliv 2020 Dec;27(1):632-41. https://doi.org/10.1080/10717544.2020.1756985
  73. Fu BD, Bi WY, He CL, Zhu W, Shen HQ, Yi PF, Wang L, Wang DC, Wei XB. Sulfated derivatives of 20(S)-ginsenoside Rh2 and their inhibitory effects on LPS-induced inflammatory cytokines and mediators. Fitoterapia 2013 Jan;84:303-7. https://doi.org/10.1016/j.fitote.2012.12.021
  74. Shin D, Moon HW, Oh Y, Kim K, Kim DD, Lim CJ. Defensive properties of ginsenoside Re against UV-B-induced oxidative stress through up-regulating glutathione and superoxide dismutase in HaCaT keratinocytes. Iran J Pharm Res 2018;17(1):249-60.
  75. Oh Y, Lim HW, Kim K, Lim CJ. Ginsenoside Re improves skin barrier function in HaCaT keratinocytes under normal growth conditions. Biosci Biotechnol Biochem 2016 Nov;80(11):2165-7. https://doi.org/10.1080/09168451.2016.1206808
  76. Paul S, Shin HS, Kang SC. Inhibition of inflammations and macrophage activation by ginsenoside-Re isolated from Korean ginseng (Panax ginseng C.A. Meyer). Food Chem Toxicol 2012 May;50(5):1354-61. https://doi.org/10.1016/j.fct.2012.02.035
  77. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997;88:593-602. https://doi.org/10.1016/S0092-8674(00)81902-9
  78. Wang XY, Wang YG, Wang YF. Ginsenoside Rb1, Rg1 and three extracts of traditional Chinese medicine attenuate ultraviolet B-induced G1 growth arrest in HaCaT cells and dermal fibroblasts involve down-regulating the expression of p16, p21 and p53. Photodermatol Photoimmunol Photomed 2011 Aug;27(4):203-12. https://doi.org/10.1111/j.1600-0781.2011.00601.x
  79. Zhou Y, Wang YP, He YH, Ding JC. Ginsenoside Rg1 performs anti-aging functions by suppressing mitochondrial pathway-mediated apoptosis and activating sirtuin 3 (SIRT3)/Superoxide dismutase 2 (SOD2) pathway in sca1+ HSC/HPC cells of an aging rat model. Med Sci Monit 2020 Apr 7;26:e920666.
  80. Tang YL, Zhou Y, Wang YP, He YH, Ding JC, Li Y, Wang CL. Ginsenoside Rg1 protects against Sca-1+ HSC/HPC cell aging by regulating the SIRT1-FOXO3 and SIRT3-SOD2 signaling pathways in a γ-ray irradiation-induced aging mice model. Exp Ther Med 2020 Aug;20(2):1245-52. https://doi.org/10.3892/etm.2020.8810
  81. Lou JS, Chen XE, Zhang Y, Gao ZW, Chen TP, Zhang GQ, Ji C. Photoprotective and immunoregulatory capacity of ginsenoside Rg1 in chronic ultraviolet B-irradiated BALB/c mouse skin. Exp Ther Med 2013 Oct;6(4):1022-8. https://doi.org/10.3892/etm.2013.1235
  82. Liu M, Zhang JT. The immunoregulatory effects of ginsenoside Rg1 in aged rats. Acta Pharm Sin 1995;30:818-23.
  83. Shi Q, He Q, Chen W, Long J, Zhang B. Ginsenoside Rg1 abolish imiquimod-induced psoriasis-like dermatitis in BALB/c mice via downregulating NF-kB signaling pathway. J Food Biochem 2019 Nov;43(11):e13032.
  84. Kang HJ, Huang YH, Lim HW, Shin D, Jang K, Lee Y, Kim K, Lim CJ. Stereo-specificity of ginsenoside Rg2 epimers in the protective response against UV-B radiation-induced oxidative stress in human epidermal keratinocytes. J Photochem Photobiol B 2016 Dec;165:232-9. https://doi.org/10.1016/j.jphotobiol.2016.10.034
  85. Chung YH, Jeong SA, Choi HS, Ro S, Lee JS, Park JK. Protective effects of ginsenoside Rg2 and astaxanthin mixture against UVB-induced DNA damage. Anim Cells Syst (Seoul) 2018 Oct 9;22(6):400-6. https://doi.org/10.1080/19768354.2018.1523806
  86. Bae EA, Shin JE, Kim DH. Metabolism of ginsenoside Re by human intestinal microflora and its estrogenic effect. Biol Pharm Bull 2005;28:1903-8. https://doi.org/10.1248/bpb.28.1903
  87. Kim JH, Baek EJ, Lee EJ, Yeom MH, Park JS, Lee KW, Kang NJ. Ginsenoside F1 attenuates hyperpigmentation in B16F10 melanoma cells by inducing dendrite retraction and activating Rho signalling. Exp Dermatol 2015 Feb;24(2):150-2. https://doi.org/10.1111/exd.12586
  88. Lee CS, Nam G, Bae IH, Park J. Whitening efficacy of ginsenoside F1 through inhibition of melanin transfer in cocultured human melanocytes-keratinocytes and three-dimensional human skin equivalent. J Ginseng Res 2019 Apr;43(2):300-4. https://doi.org/10.1016/j.jgr.2017.12.005
  89. Han J, Lee E, Kim E, Yeom MH, Kwon O, Yoon TH, Lee TR, Kim K. Role of epidermal γδ T-cell-derived interleukin 13 in the skin-whitening effect of Ginsenoside F1. Exp Dermatol 2014 Nov;23(11):860-2. https://doi.org/10.1111/exd.12531
  90. Mohnen D. Pectin structure and biosynthesis. Curr Opin Plant Biol 2008 Jun;11(3):266-77. https://doi.org/10.1016/j.pbi.2008.03.006
  91. Beran F, Kollner TG, Gershenzon J, Tholl D. Chemical convergence between plants and insects: biosynthetic origins and functions of common secondary metabolites. New Phytol 2019 Jul;223(1):52-67. https://doi.org/10.1111/nph.15718
  92. Cortinovis C, Caloni F. Alkaloid-containing plants poisonous to cattle and horses in europe. Toxins (Basel) 2015 Dec 8;7(12):5301-7. https://doi.org/10.3390/toxins7124884
  93. Ferrentino G, Morozova K, Horn C, Scampicchio M. Extraction of essential oils from medicinal plants and their utilization as food antioxidants. Curr Pharm Des 2020;26(5):519-41. https://doi.org/10.2174/1381612826666200121092018
  94. Sharmeen JB, Mahomoodally FM, Zengin G, Maggi F. Essential oils as natural sources of fragrance compounds for cosmetics and cosmeceuticals. Molecules 2021 Jan 27;26(3):666.
  95. Jesumani V, Du H, Pei P, Aslam M, Huang N. Comparative study on skin protection activity of polyphenol-rich extract and polysaccharide-rich extract from Sargassum vachellianum. PLoS One 2020 Jan 7;15(1):e0227308.
  96. Kim N, Estrada O, Chavez B, Stewart C, D'Auria JC. Tropane and granatane alkaloid biosynthesis: a systematic analysis. Molecules 2016 Nov 11;21(11):1510.
  97. Amato DV, Amato DN, Blancett LT, Mavrodi OV, Martin WB, Swilley SN, Sandoz MJ, Shearer G, Mavrodi DV, Patton DL. A bio-based pro-antimicrobial polymer network via degradable acetal linkages. Acta Biomater 2018 Feb;67:196-205. https://doi.org/10.1016/j.actbio.2017.12.016
  98. Meng H, Liu XK, Li JR, Bao TY, Yi F. Bibliometric analysis of the effects of ginseng on skin. J Cosmet Dermatol 2022 Jan;21(1):99-107. https://doi.org/10.1111/jocd.14450
  99. Jiang F, Zhou C, Li Y, Deng H, Gong T, Chen J, Chen T, Yang J, Zhu P. Metabolic engineering of yeasts for green and sustainable production of bioactive ginsenosides F2 and 3β,20S-Di-O-Glc-DM. Acta Pharm Sin B 2022 Jul;12(7):3167-76. https://doi.org/10.1016/j.apsb.2022.04.012
  100. You L, Cha S, Kim MY, Cho JY. Ginsenosides are active ingredients in Panax ginseng with immunomodulatory properties from cellular to organismal levels. J Ginseng Res 2022 Nov;46(6):711-21. https://doi.org/10.1016/j.jgr.2021.12.007
  101. Lee TXY, Wu J, Jean WH, Condello G, Alkhatib A, Hsieh CC, Hsieh YW, Huang CY, Kuo CH. Reduced stem cell aging in exercised human skeletal muscle is enhanced by ginsenoside Rg1. Aging (Albany NY) 2021 Jun 28;13(12):16567-76. https://doi.org/10.18632/aging.203176
  102. Chuang TH, Kim JH, Seol SY, Kim YJ, Lee YJ. The effects of Korean red ginseng on biological aging and antioxidant capacity in postmenopausal women: a double-blind randomized controlled study. Nutrients 2021 Sep 2;13(9):3090.
  103. Jung SJ, Oh MR, Lee DY, Lee YS, Kim GS, Park SH, Han SK, Kim YO, Yoon SJ, Chae SW. Effect of ginseng extracts on the improvement of osteopathic and arthritis symptoms in women with osteopenia: a randomized, double-blind, placebo-controlled clinical trial. Nutrients 2021 Sep 24;13(10):3352.
  104. Mukherjee PK, Maity N, Nema NK, Sarkar BK. Bioactive compounds from natural resources against skin aging. Phytomedicine 2011 Dec 15;19(1):64-73. https://doi.org/10.1016/j.phymed.2011.10.003
  105. Zhang HE, Chu MY, Jiang T, Song XH, Hou JF, Cheng LY, Feng Y, Chen CB, Wang EP. By-product of the red ginseng manufacturing process as potential material for use as cosmetics: chemical profiling and in vitro antioxidant and whitening activities. Molecules 2022 Nov 24;27(23):8202.
  106. Meng H, Liu XK, Li JR, Bao TY, Yi F. Bibliometric analysis of the effects of ginseng on skin. J Cosmet Dermatol 2022 Jan;21(1):99-107. https://doi.org/10.1111/jocd.14450