DOI QR코드

DOI QR Code

연안 용존산소 현장 모니터링용 산소광센서 데이터로거 개발 및 적용

Development and Applications of an Optic Oxygen Sensor Datalogger for in situ Dissolved Oxygen Monitoring in Coastal Water

  • 이재성 (한국해양과학기술원 해양자원.환경연구본부 해양환경연구부) ;
  • 백현민 (한국해양과학기술원 해양자원.환경연구본부 해양환경연구부)
  • Jae Seong, Lee (Marine Environment Research Department, Marine Resources & Environment Research Division, Korea Institute of Ocean Science & Technology) ;
  • Hyunmin Baek (Marine Environment Research Department, Marine Resources & Environment Research Division, Korea Institute of Ocean Science & Technology)
  • 투고 : 2023.05.18
  • 심사 : 2023.06.12
  • 발행 : 2023.06.30

초록

Dissolved oxygen (DO) is a crucial parameter for assessing environmental conditions in aquatic ecosystems. However, commercial in situ dataloggers for oxygen optodes can be relatively expensive and limited in their specifications. In this paper, we present a novel design for a DO datalogger system based on the control boards family with RP2040 MCU chipset. Our design includes two types of dataloggers: a simple logging system and a programmable system for sampling rates via magnetic switches underwater for divers. We provide detailed descriptions of the system, including the MicroPython source code and drawings to aid in construction. We also discuss the various applications of our DO datalogger system in monitoring dissolved oxygen concentration in coastal waters and assessing the benthic metabolism of aquatic ecosystems. Our DO datalogger system provides an affordable and flexible option for researchers to accurately monitor DO concentrations in aquatic environments, and thereby improve our understanding of these complex ecosystems.

키워드

과제정보

이 연구는 한국해양과학기술원 주요사업 "기후변화에 따른 동해 연안 갯녹음 유발요인 검증 원천기술 개발 (PEA0116)" 및 "남해·제주 연안 해양 환경 변화 관리 시스템 개발(PEA0113)"과제의 지원을 받아 수행되었습니다.

참고문헌

  1. MOF (2013) Korean Standard Method of Examination for Marine Environment. Ministry of Oceans and Fisheries. https://law.go.kr/LSW/admRulLsInfoP.do?admRulSeq=2100000202962 Accessed 02 Mar 2023
  2. Caldas-Morgan M, Alvarez-Rosario A, Rodrigues Padovese L (2015) An autonomous underwater recorder based on a single board computer. PLoS ONE 10(6):e0130297. doi:10.1371/journal.pone.0130297
  3. Dellisanti W, Tsang RHL, Ang P Jr, Wu J, Wells ML, Chan LL (2020) A diver-portable respirometry system for insitu short-term measurements of coral metabolic health and rates of calcification. Front Mar Sci 7:571451. doi: 10.3389/fmars.2020.571451
  4. Dolgin E (2018) How to start a lab when funds are tight career-feature. Nature 559(7713):291-293. doi:10.1038/d41586-018-05655-3
  5. Glud RN (2008) Oxygen dynamics of marine sediments. Mar Biol Res 4:243-289. doi:10.1080/17451000801888726
  6. Glud RN, Gundersen J, Ramsing NB (2000) Electrochemical and optical oxygen microsensors for in situ measnurement. In: Buffle J, Horvai G (eds) In situ monitoring of aquatic systems: chemical analysis and speciation. IUPAC series on analytical and Physical Chemistry of Environmental Systems, John Wiley & Sons, Chichester, pp 19-74
  7. Jolles JW (2021) Broad-scale applications of the Raspberry Pi: a review and guide for biologist. Methods Ecol Evol 12:1562-1579. doi:10.1111/2041-210X.13652
  8. Kwok R (2017) Build in yourself. Nature 545(7653):253-255. doi:10.1038/nj7653-253a
  9. Mallon J, Banaszak AT, Donachie L, Exton D, Cyronak T, Balke T, Bass AM (2022) A low-cost benthic incubation chamber for in-situ community metabolism measurements. PeerJ 10:e13116. doi:10.7717/peerj.13116
  10. Mouy X, Black M, Cox K, Qualley J, Mireault C, Dosso S, Juanes F (2020) FishCam: a low-cost open source autonomous camera for aquatic research. HardwareX 8:e00110. doi:10.1016/j.ohx.2020.e00110
  11. Phillips BT, Licht S, Haiat KS, Bonney J, Allder J, Chaloux N, Shomberg R, Noyes TJ (2019) DEEPi: a miniaturized, robust, and economical camera and computer system for deep-sea exploration. Deep-Sea Res Pt I 153:103136. doi:10.1016/j.drs.2019.103136
  12. Purser A, Hoge U, Lemburg J, Bodur Y, Schiller E, Ludszuweit J, Greinert J, Dreutter S, Dorschel B, Wenzhofer F (2020) PlasPI marine cameras: open source, affordable camera systems for time series marine studies. HardwareX 7:e00102. doi:10.1016/j.ohx.2020.e00102
  13. Ravindran S (2020) How DIY technologies are democratizing science. Nature 587(7834):509-511. doi:10.1038/d41586-020-03193-5
  14. Roth F, Wild C, Carvalho S, Radecker N, Voolstra CR, Kurten B, Anlauf H, El-Khaled YC, Carolan R, Jones BH, Trueman C (2019) An in situ approach for measuring biogeochemical fluxes in structurally complex benthic communities. Methods Ecol Evol 10(5):712-725. doi:10.1111/2041-210X.13151
  15. Soulie T, Mas S, Parin, D, Vidussi, F, Mostarjir B (2021) A new method to estimate planktonic oxygen metabolism using high-frequency sensor measurements in mesocosm experiments and considering daytime and nighttime respiration. Limnol Oceanogr Methods 19:303-316. doi:10.1002/lom3.10424
  16. Wei Y, Jiao Y, An D, Li D, Li W, Wei Q (2019) Review of dissolved oxygen detection technology: from laboratory analysis to online intelligent detection. Sensors 19:3995. doi:10.3390/s19183995
  17. Williams K, De Robertis A, Berkowitz Z, Rooper C, Towler R (2014) An underwater stereo-camera trap. Method Oceanogr 11:1-12. doi:10.1016/j.mio.2015.01.003
  18. Yats KK, Halley RB (2003) Measuring coral reef community metabolisms using new benthic chamber technology. Coral Reefs 22(3):247-255. doi: 10.1007/s00338-003-0314-5