DOI QR코드

DOI QR Code

등호의 관계적 이해를 강조한 수업에서 나타나는 학생의 노티싱 분석

Analysis of student noticing in a lesson that emphasizing relational understanding of equals sign

  • 투고 : 2023.07.19
  • 심사 : 2023.08.28
  • 발행 : 2023.08.31

초록

본 연구는 초등학교 1학년 학생을 대상으로 등호의 관계적 이해를 강조한 수업에서 나타나는 학생의 노티싱을 초점의 중심, 집중하는 상호작용, 수학 과제, 수학 활동의 본질의 네 가지 측면에서 분석하였다. 구체적으로 선행연구에서 도출한 지도방안을 등호를 처음 도입하는 1학년 덧셈과 뺄셈 단원에 적용하여 등호의 관계적 이해를 강조한 수업을 실행하고, 이 과정에서 나타난 학생의 노티싱을 종합적으로 분석하였다. 그 결과 실제 수업 맥락에서 초점의 중심은 등식의 구조와 과제 형태, 교사와 학생의 상호작용, 교실 관행 등에 영향을 받았으며, 특히 학생이 등호를 관계적으로 인식할 수 있도록 돕는 특정한 교사와 학생의 상호작용을 발견할 수 있었다. 또한 크기가 같은 두 양에 주목하는 경우와 양변의 관계에 주목하는 경우 등식을 관계적으로 추론할 수 있었던 것과 같이 등식에 대한 학생의 노티싱은 등식을 추론하는 방식에 영향을 미친다는 것을 알 수 있었다. 이러한 연구결과를 통해 등호의 지도 방안에 대한 시사점을 제시하였다.

This study analyzed student noticing in a lesson that emphasized relational understanding of equal signs for first graders from four aspects: centers of focus, focusing interactions, mathematical tasks, and nature of the mathematical activity. Specifically, the instructional factors that emphasize the relational understanding of equal signs derived from previous research were applied to a first-grade addition and subtraction unit, and then lessons emphasizing the relational understanding of equal signs were conducted. Students' noticing in this lesson was comprehensively analyzed using the focusing framework proposed in the previous study. The results showed that in real classroom contexts centers of focus is affected by the structure of the equation and the form of the task, teacher-student interactions, and normed practices. In particular, we found specific teacher-student interactions, such as emphasizing the meaning of the equals sign or using examples, that helped students recognize the equals sign relationally. We also found that students' noticing of the equation affects reasoning about equation, such as being able to reason about the equation relationally if they focuse on two quantities of the same size or the relationship between both sides. These findings have implications for teaching methods of equal sign.

키워드

참고문헌

  1. Blanton, M., Levi, L., Crites, T., & Dougherty, B. (2011). Developing essential understanding of algebraic thinking for teaching mathematics in grades 3-5. NCTM.
  2. Blanton, M., Otalora, Y., Brizuela, B. M., Gardiner, A. M., Sawrey, K. B., Gibbins, A., & Kim, Y. (2018). Exploring kindergarten students' early understandings of the equal sign. Mathematical Thinking and Learning, 20(3), 167-201. https://doi.org/10.1080/10986065.2018.1474534
  3. Campbell, T. G., & Yeo, S. (2023). Student noticing of collaborative practices: exploring how college students notice during small group interactions in math. Educational Studies in Mathematics, 113, 405-423. https://doi.org/10.1007/s10649-023-10206-3
  4. Cowie, B., Harrison, C., & Willis, J. (2018). Supporting teacher responsiveness in assessment for learning through disciplined noticing. The Curriculum Journal, 29(4), 464-478. https://doi.org/10.1080/09585176.2018.1481442
  5. Dominguez, H. (2019). Theorizing reciprocal noticing with non-dominant students in mathematics. Educational Studies in Mathematics, 102(1), 75-89. https://doi.org/10.1007/s10649-019-09896-5
  6. Donovan, A. M., Stephens, A., Alapala, B., Monday, A., Szkudlarek, E., Alibali, M. W., & Matthews, P. G. (2022). Is a substitute the same? Learning from lessons centering different relational conceptions of the equal sign. ZDM-Mathematics Education, 54(6), 1199-1213. https://doi.org/10.1007/s11858-022-01405-y
  7. Hohensee, C. (2016). Student noticing in classroom settings: A process underlying influences on prior ways of reasoning. The Journal of Mathematics Behavior, 42, 69-91. https://doi.org/10.1016/j.jmathb.2016.03.002
  8. Hunter, J., & Miller, J. (2022). The use of cultural contexts for patterning tasks: Supporting young diverse students to identify structures and generalize. ZDM-Mathematics Education, 54(6), 1349-1362. https://doi.org/10.1007/s11858-022-01386-y
  9. Jacobs, V. R., Lamb, L. L., & Philipp, R. A. (2010). Professional noticing of children's mathematical thinking. Journal for Research in Mathematics Education, 41(2), 169-202. https://doi.org/10.5951/jresematheduc.41.2.0169
  10. Jones, S. R., Long, N. E., & Becnel, J. J. (2022). Design of virtual reality modules for multivariable calculus and an examination of student noticing within them. Research in Mathematics Education, 25(2), 219-242. https://doi.org/10.1080/14794802.2022.2045625
  11. Kaiser, G., Busse, A., Hoth, J., Konig, J., & Blomeke, S. (2015). About the complexities of video-based assessments: Theoretical and methodological approaches to overcoming shortcomings of research on teachers' competence. International Journal of Science and Mathematics Education, 13, 369-387. https://doi.org/10.1007/s10763-015-9616-7
  12. Kim, J. S., Choi, J. Y., & Pang, J. S. (2016). How do elementary school students understand '='? Performance on various item types. Journal of Educational Research in Mathematics, 26(1), 79-101.
  13. Kim, S. H., & Pang, J. S. (2023). An analysis of lessons emphasizing the relational understanding of the equal sign in introducing addition and subtraction. Journal of Elementary Mathematics Education in Korea, 26(1), 63-86. https://doi.org/10.54340/kseme.2022.27.1.4
  14. Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in Mathematics, 12(3), 317-326. https://doi.org/10.1007/BF00311062
  15. Konig, J., Santagata, R., Scheiner, T., Adleff, A. K., Yang, X., & Kaiser, G. (2022). Teacher noticing: A systematic literature review of conceptualizations, research designs, and findings on learning to notice. Educational Research Review, 36, 100453. https://doi.org/10.1016/j.edurev.2022.100453
  16. Lobato, J., Hohensee, C., & Rhodehamel, B. (2013). Students' mathematical noticing. Journal for Research in Mathematics Education, 44(5), 809-850. https://doi.org/10.5951/jresematheduc.44.5.0809
  17. Lee, J. A., & Lee, S. J. (2019). Mathematical noticing of two prospective secondary teachers in the course of planning, implementing, and reflecting on lessons. School Mathematics, 21(3), 561-589. https://doi.org/10.29275/sm.2019.09.21.3.561
  18. Lee, S. J., & Park, J. H. (2018). Mathematical noticing of prospective secondary mathematics teachers in graphing functions through analyzing the task dialogue. School Mathematics, 20(3), 425-443. https://doi.org/10.29275/sm.2018.09.20.3.425
  19. Mason, J. (2015). Responding in-the-moment: Learning to prepare for the unexpected. Research in Mathematics Education, 17(2), 110-127. https://doi.org/10.1080/14794802.2015.1031272
  20. Matthews, P., Rittle-Johnson, B., McEldoon, K., & Taylor, R. (2012). Measure for measure: What combining diverse measures reveals about children's understanding of the equal sign as an indicator of mathematical equality. Journal for Research in Mathematics Education, 43(3), 316-350. https://doi.org/10.5951/jresematheduc.43.3.0316
  21. McNeil, N. M., Fyfe, E. R., & Dunwiddie, A. E. (2015). Arithmetic practice can be modified to promote understanding of mathematical equivalence. Journal of Educational Psychology, 107(2), 423-426. https://doi.org/10.1037/a0037687
  22. Molina, M., & Ambrose, R. (2008). From an operational to a relational conception of the equal sign. Thirds graders' developing algebraic thinking. Focus on Learning Problems in Mathematics, 30(1), 61-80.
  23. Pang, J. S., Kwon, M. S., & Sunwoo, J. (2017). Trends and issues in research on noticing in mathematics education. School Mathematics, 19(4), 795-817.
  24. Pang, J. S., & Lee, Y. J. (2022). An analysis of teachers' knowledge on the strategies for understanding and solving equations by fourth graders. The Mathematical Education, 61(1), 109-126. https://doi.org/10.7468/Matheus.2022.61.1.109
  25. Ryu, K., Jung, J. W., Kim, Y. S., & Kim, H. B. (2018). Understanding qualitative research methods. Park Young Sa
  26. Son, T. K., & Hwang, S. H. (2021). Examining teachers' noticing competency on students' problem-solving strategies: Focusing on errors in fraction addition and subtraction with uncommon denominators problems. The Mathematical Education, 60(2), 229-247. https://doi.org/10.7468/Matheus.2021.60.2.229
  27. Stephens, A. C., Knuth, E. J., Blanton, M. L., Isler, I., Gardiner, A. M., & Marum, T. (2013). Equation structure and the meaning of the equal sign: The impact of task selection in eliciting elementary students' understandings. The Journal of Mathematical Behavior, 32(2), 173-182. https://doi.org/10.1016/j.jmathb.2013.02.001
  28. van Es, E. A., & Sherin, M. G. (2002). Learning to notice: Scaffolding new teachers' interpretations of classroom interactions. Journal of Technology and Teacher Education, 10(4), 571-596.
  29. van Es, E. A., & Sherin, M. G. (2006). How different video club designs support teachers in "learning to notice". Journal of Computing in Teacher Education, 22(4), 125-135. https://doi.org/10.1080/10402454.2006.10784548
  30. Wilkie, K. J. (2022). Generalization of quadratic figural patterns: Shifts in student noticing. The Journal of Mathematical Behavior, 65, 100917. https://doi.org/10.1016/j.jmathb.2021.100917
  31. Yin, R. K. (2014). Case study research: Design and methods (5th ed.). Sage.