DOI QR코드

DOI QR Code

Sensitivity analysis of mass ratio effect on settlement and seismic response of shallow foundation using numerical simulation

  • Kil-Wan Ko (Department of Civil and Environmental Engineering, University of Southern California) ;
  • Jeong-Gon Ha (Advanced Structures and Seismic Safety Research Division, Korea Atomic Energy Research Institute) ;
  • Jinsun Lee (Department of Civil and Environmental Engineering, Wonkwang University) ;
  • Gye-Chun Cho (Department of Civil and Environmental Engineering, Korean Advanced Institute for Science and Technology)
  • 투고 : 2023.05.16
  • 심사 : 2023.08.13
  • 발행 : 2023.09.25

초록

Structural inertial interaction is a representative the effect of dynamic soil-foundation-structure interaction (SFSI), which leads to a relative displacement between soil and foundation, period lengthening, and damping increasing phenomena. However, for a system with a significantly heavy foundation, the dynamic inertia of the foundation influences and interacts with the structural seismic response. The structure-to-foundation mass ratio (MR) quantifies the distribution of mass between the structure and foundation for a structure on a shallow foundation. Although both systems exhibit the same vertical factor of safety (FSv), the MR and corresponding seismic responses attributed to the structure and foundation masses may differ. This study explored the influence of MR on the permanent deformation and seismic response of soil-foundation-structure system considering SFSI via numerical simulations. Given that numerous dimensionless parameters of SFSI described its influence on the structural seismic response, the parameters, except for MR and FSv, were fixed for the sensitivity analysis. The results demonstrated that the foundation inertia of heavier foundations induced more settlement due to sliding behavior of heavily-loaded systems. Moreover, the structural inertia of heavier structures evidently exhibited foundation rocking behavior, which results in a more elongated natural period of the structure for lightly-loaded systems.

키워드

과제정보

This research was supported by Korea Construction Engineering and Transport Development Collaboratory Management Institute (KOCED) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2017R1A5A1014883).

참고문헌

  1. Anastasopoulos, I., Gazetas, G., Loli, M., Apostolou, M. and Gerolymos, N. (2010), "Soil failure can be used for seismic protection of structures", Bull. Earthq. Eng., 8(2), 309-326. https://doi.org/10.1007/s10518-009-9145-2.
  2. Cheney, R. and Chassie, R. (2000), Soils and Foundations Workshop Reference Manual (No. FHWA NHI-00-045), Washington, DC: Federal Highway Administration.
  3. Chen, Z., Trombetta, N.W., Hutchinson, T.C., Mason, H.B., Bray, J.D. and Kutter, B.L. (2013), "Seismic system identification using centrifuge-based soil-structure interaction test data", J. Earthq. Eng., 17(4), 469-496. https://doi.org/10.1080/13632469.2012.762956.
  4. Deviprasad, B.S. and Dodagoudar, G.R. (2020), "Seismic response of bridge pier supported on rocking shallow foundation", Geomech. Eng., 21(1), 73-84. https://doi.org/10.12989/gae.2020.21.1.073.
  5. Gajan, S., Kutter, B.L., Phalen, J.D., Hutchinson, T.C. and Martin, G.R. (2005), "Centrifuge modeling of load-deformation behavior of rocking shallow foundations", Soil Dyn. Earthq. Eng., 25(7), 773-783. https://doi.org/10.1016/j.soildyn.2004.11.019.
  6. Gajan, S. and Kutter, B.L. (2008), "Capacity, settlement, and energy dissipation of shallow footings subjected to rocking", J. Geotech. Geoenviron. Eng., 134(8), 1129-1141. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:8(1129).
  7. Gajan, S. and Kutter, B.L. (2009), "Effects of moment-to-shear ratio on combined cyclic load-displacement behavior of shallow foundations from centrifuge experiments", J. Geotech. Geoenviron. Eng., 135(8), 1044-1055. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000034.
  8. Gavras, A.G., Kutter, B.L., Hakhamaneshi, M., Gajan, S., Tsatsis, A., Sharma, K., Kohno, T., Deng, L., Anastasopoulos, I. and Gazetas, G. (2020), "Database of rocking shallow foundation performance: Dynamic shaking", Earthq. Spectra, 36(2), 960-982. https://doi.org/10.1177/8755293019891727.
  9. Ha, J.G., Ko, K.W., Jo, S.B., Park, H.J. and Kim, D.S. (2019), "Investigation of seismic performances of unconnected pile foundations using dynamic centrifuge tests", Bull. Earthq. Eng., 17(5), 2433-2458. https://doi.org/10.1007/s10518-018-00530-y.
  10. Hardin, B.O. and Drnevich, V.P. (1972), "Shear modulus and damping in soils: Design equations and curves", J. Soil Mech. Found. Div., 98(7), 667-692. https://doi.org/10.1061/jsfeaq.0001760.
  11. Huynh, V.Q., Nguyen, T.K. and Nguyen, X.H. (2021), "Seismic analysis of soil-structure interaction: experimentation and modeling", Geomech. Eng., 27(2), 115-121. https://doi.org/10.12989/gae.2021.27.2.115.
  12. Itasca Consulting Group, Inc. (2019), FLAC3D - Fast Lagrangian Analysis of Continua in Three-Dimensions, Ver. 7.0. Minneapolis: Itasca.
  13. Kimmerling, R.E., Bachus R.C., Mayne P.W., Scheider J.A. and Zettler T.E. (2002), Geotechnical engineering circular no. 6, shallow foundations, Washington, DC: Federal Highway Administration.
  14. Kim, D.K., Lee, S., Kim, D., Choo, Y.W. and Park, H. (2015), "Rocking effect of a mat foundation on the earthquake response of structures", J. Geotech. Geoenviron. Eng, 141(1), 04014085. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001207
  15. Ko, K.W., Ha, J.G. and Kim, D.S. (2020), "Structural inertial interaction effects on foundation behavior", Soil Dyn. Earthq. Eng., 136, 106238. https://doi.org/10.1016/j.soildyn.2020.106238.
  16. Ko, K.W., Ha, J.G., Park, H.J. and Kim, D.S. (2021), "Investigation of period-lengthening ratio for single-degree-of-freedom structures using dynamic centrifuge test", J. Earthq. Eng., 25(7), 1358-1380. https://doi.org/10.1080/13632469.2019.1576557.
  17. Kramer, S.L., Sideras, S.S. and Greenfield, M.W. (2016), "The timing of liquefaction and its utility in liquefaction hazard evaluation", Soil Dyn. Earthq. Eng., 91, 133-146. https://doi.org/10.1016/j.soildyn.2016.07.025.
  18. Lee, S.H., Choo, Y.W. and Kim, D.S. (2013), "Performance of an equivalent shear beam (ESB) model container for dynamic geotechnical centrifuge tests", Soil Dyn. Earthq. Eng., 44, 102-114. https://doi.org/10.1016/j.soildyn.2012.09.008.
  19. Lee, J.S., Chae, H.G., Kim, D.S., Jo, S.B. and Park, H.J. (2015), "Numerical analysis of inverted T-type wall under seismic loading", Comput. Geotech., 66, 85-95. https://doi.org/10.1016/j.compgeo.2015.01.013.
  20. Lysmer, J. and Kuhlemeyer, R.L. (1969), "Finite dynamic model for infinite media", J. Eng. Mech. Div., 95(4), 859-877. https://doi.org/10.1061/JMCEA3.0001144.
  21. Martakis, P., Taeseri, D., Chatzi, E. and Laue, J. (2017), "A centrifuge-based experimental verification of Soil-Structure Interaction effects", Soil Dyn. Earthq. Eng., 103, 1-14. https://doi.org/10.1016/j.soildyn.2017.09.005.
  22. Meyerhof, G.G. (1963), "Some recent research on the bearing capacity of foundations", Can. Geotech. J., 1(1), 16-26. https://doi.org/10.1139/t63-003.
  23. Mejia, L. and Dawson, E. (2006), Earthquake deconvolution for FLAC. In: de Varona, P., Hart, R.D., editors. FLAC and numerical modeling in geomechanics, Proceedings of the 4th international FLAC symposium, 2006, Madrid (Spain): Itasca Consulting Group.
  24. Newmark, N.M. (1965), "Effects of earthquakes on dams and embankments", Geotechnique, 15(2), 139-160. https://doi.org/10.1680/geot.1965.15.2.139.
  25. Ngo, V.L., Kim, J.M. and Lee, C. (2019), "Influence of structure-soil-structure interaction on foundation behavior for two adjacent structures: Geo-centrifuge experiment", Geomech. Eng., 19(5), 407-420. https://doi.org/10.12989/gae.2019.19.5.407.
  26. Raychowdhury, P. and Hutchinson, T.C. (2009), "Performance evaluation of a nonlinear Winkler-based shallow foundation model using centrifuge test results", Earthq. Eng. Struct. Dyn., 38(5), 679-698. https://doi.org/10.1002/eqe.902.
  27. Richards, R., Elms, D.G. and Budhu, M. (1993), "Seismic bearing capacity and settlements of foundations", J. Geotech. Eng., 119(4), 662-674. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:4(662).
  28. Safak, E. (1995), "Detection and identification of soil-structure interaction in buildings from vibration recordings", J. Struct. Eng., 121(5), 899-906. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:5(899).
  29. Sbartai, B. (2020), "A polynomial mathematical tool for foundation-soil-foundation interaction", Geomech. Eng., 23(6), 547-560. https://doi.org/10.12989/gae.2020.23.6.547.
  30. Schofield, A.N. (1980), "Cambridge geotechnical centrifuge operations", Geotechnique, 30(3), 227-268. https://doi.org/10.1680/geot.1980.30.3.227.
  31. Shirato, M., Kouno, T., Asai, R., Nakatani, S., Fukui, J. and Paolucci, R. (2008), "Large-scale experiments on nonlinear behavior of shallow foundations subjected to strong earthquakes", Soils Found., 48(5), 673-692. https://doi.org/10.3208/sandf.48.673.
  32. Stewart, J.P., Fenves, G.L. and Seed, R.B. (1999), "Seismic soil-structure interaction in buildings. I: Analytical methods", J. Geotech. Geoenviron. Eng., 125(1), 26-37. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:1(26).
  33. Stewart, J.P. (2000), "Variations between foundation-level and free-field earthquake ground motions", Earthq. Spectra, 16(2), 511-532. https://doi.org/10.1193/1.1586124.
  34. Sun, Q. and Dias, D. (2018), "Significance of rayleigh damping in nonlinear numerical seismic analysis of tunnels", Soil Dyn. Earthq. Eng., 115, 489-494. https://doi.org/10.1016/j.soildyn.2018.09.013.
  35. Tabatabaiefar, H.R. and Fatahi, B. (2014), "Idealisation of soil-structure system to determine inelastic seismic response of mid-rise building frames", Soil Dyn. Earthq. Eng., 66, 339-351. https://doi.org/10.1016/j.soildyn.2014.08.007.
  36. Trifunac, M.D., Ivanovic, S.S. and Todorovska, M.I. (2001), "Apparent periods of a building I: Fourier analysis", J. Struct. Eng., 127(5), 517-526. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:5(517).
  37. Yoo, M., Kwon, S.Y. and Hong, S. (2022). "Dynamic response evaluation of deep underground structures based on numerical simulation", Geomech. Eng., 29(3), 269-279. https://doi.org/10.12989/gae.2022.29.3.269.
  38. Veletsos, A.S. and Meek, J.W. (1974), "Dynamic behaviour of building-foundation systems", Earthq. Eng. Struct. Dyn., 3(2), 121-138. https://doi.org/10.1002/eqe.4290030203.
  39. Wolf, J. (1985), Dynamic Soil-Structure Interaction, Englewood Cliffs, NJ: PrenticeHall.