DOI QR코드

DOI QR Code

Shear behavior of foam-conditioned gravelly sands: Insights from pressurized vane shear tests

  • Shuying Wang (School of Civil Engineering, Central South University) ;
  • Jiazheng Zhong (School of Civil Engineering, Central South University) ;
  • Qiujing Pan (School of Civil Engineering, Central South University) ;
  • Tongming Qu (Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology) ;
  • Fanlin Ling (School of Civil Engineering, Central South University)
  • Received : 2022.09.09
  • Accepted : 2023.08.12
  • Published : 2023.09.25

Abstract

When an earth pressure balance (EPB) shield machine bores a tunnel in gravelly sand stratum, the excavated natural soil is normally transformed using foam and water to reduce cutter wear and the risk of direct muck squeezing out of the screw conveyor (i.e., muck spewing). Understanding the undrained shear behavior of conditioned soils under pressure is a potential perspective for optimizing the earth pressure balance shield tunnelling strategies. Owing to the unconventional properties of conditioned soil, a pressurized vane shear apparatus was utilized to investigate the undrained shear behavior of foam-conditioned gravelly sands under normal pressure. The results showed that the shear stress-displacement curves exhibited strain-softening behavior only when the initial void ratio (e0) of the foam-conditioned sand was less than the maximum void ratio (emax) of the unconditioned sand. The peak and residual strength increased with an increase in normal pressure and a decrease in foam injection ratio. A unique relation between the void ratio and the shear strength in the residual stage was observed in the e-ln(τ) space. When e0 was greater than emax, the fluid-like specimens had quite low strengths. Besides, the stick-slip behavior, characterized by the variation coefficient of measured shear stress in the residual stage, was more evident under lower pressure but it appeared to be independent of the foam injection. A comparison between the results of pressurized vane shear tests and those of slump tests indicated that the slump test has its limitations to characterize the chamber muck fluidity and build the optimal conditioning parameters.

Keywords

Acknowledgement

The financial support from the National Outstanding Youth Science Fund Project of the National Natural Science Foundation of China (No. 52022112), the National Natural Science Foundation of China (No. 52108388) and the Hunan Provincial Innovation Foundation for Postgraduate of China (No. 2020zzts152) are acknowledged and appreciated.

References

  1. Adjemian, F. and Evesque, P. (2004), "Experimental study of stick-slip behavior", Int. J. Numer. Anal. Method. Geomech., 28(6), 501-530. https://doi.org/10.1002/nag.350.
  2. Albert, I., Tegzes, P., Kahng, B., Albert, R., Sample, J.G., Pfeifer, M., Barabasi, A.L., Vicsek, T. and Schiffer, P. (2000), "Jamming and fluctuations in granular drag", Phys. Rev. Lett., 84(22), 5122-5125. https://doi.org/10.1103/PhysRevLett.84.5122
  3. ASTM D4648 (2011), Standard test method for laboratory miniature vane shear test for saturated fine-grained clayey soil, American Society for Testing and Materials, West Conshohocken, PA: ASTM, USA.
  4. Bai, X.D., Cheng, W.C., Ong, D.E.L. and Li, G. (2021), "Evaluation of geological conditions and clogging of tunneling using machine learning", Geomech. Eng., 25(1), 59-73. https://doi.org/10.12989/gae.2021.25.1.059.
  5. Bezuijen, A. (2012), "Foam used during EPB tunnelling in saturated sand, parameters determining foam consumption", Proceedings of the World Tunnel Congress, Bangkok, Thailand, January.
  6. Budach, C. (2012), "Untersuchungen zum erweiterten Einsatz von Erddruckschilden in grobkornigem Lockergestein", Ph.D. Dissertation, the Ruhr-Universitat Bochum, Bochum, Germany.
  7. Budach, C. and Thewes, M. (2015), "Application ranges of EPB shields in coarse ground based on laboratory research", Tunn. Undergr. Sp. Tech., 50, 296-304. https://doi.org/10.1016/j.tust.2015.08.006.
  8. Cao, W.G., Wang, J.Y. and Zhai, Y.C. (2012), "Study of simulation method for the shear deformation of rock structural planes and interfaces with consideration of residual strength", China Civil Eng. J.. 45(4), 127. (in Chinese)
  9. Dang, T.S. and Meschke, G. (2020), "Influence of muck properties and chamber design on pressure distribution in EPB pressure chambers - Insights from computational flow simulations", Tunn. Undergr. Sp. Tech., 99, 103333. https://doi.org/10.1016/j.tust.2020.103333.
  10. Duarte, M.A.P. (2007), "Foam as a soil conditioner in tunnelling: physical and mechanical properties of conditioned sands", M.D. Dissertation, University of Oxford, UK.
  11. EFNARC (2005), Specifications and guidelines for the use of specialist products for mechanized tunnelling (TBM) in soft ground and hard rock, European Federation of National Associations Representing for Specialist Construction Chemicals and Concrete systems, Farnham, UK.
  12. Galli, M. and Thewes, M. (2019), "Rheological characterisation of foam-conditioned sands in EPB tunneling", Int. J. Civ. Eng., 17(1), 145-160. https://doi.org/10.1007/s40999-018-0316-x.
  13. GB/T50145 (2007), Standard for engineering classification of soil, Ministry of Water Resources of the People's Republic of China, Beijing, China. (in Chinese)
  14. GB/T50123 (2019), Standard for geotechnical test methods, Ministry of Water Resources of the People's Republic of China, Beijing, China. (in Chinese)
  15. Hu, W. and Rostami J. (2020), "A new method to quantify rheology of conditioned soil for application in EPB TBM tunneling", Tunn. Undergr. Sp. Tech., 96, 103192. https://doi.org/10.1016/j.tust.2019.103192.
  16. Hu, W. and Rostami, J. (2021), "Evaluating rheology of conditioned soil using commercially available surfactants (foam) for simulation of material flow through EPB machine", Tunn. Undergr. Sp. Tech., 112, 103881. https://doi.org/10.1016/j.tust.2021.103881.
  17. Huang, S., Wang, S.Y., Xu, C.J., Shi, Y.F. and Ye, F. (2019), "Effect of grain gradation on the permeability characteristics of coarse-grained soil conditioned with foam for EPB shield tunnelling", KSCE J. Civ. Eng., 23(11), 4662. https://doi.org/10.1007/s12205-019-0717-7.
  18. Jancsecz, S., Krause, R. and Langmaack, L. (1999), "Advantages of soil conditioning in shield tunnelling: experiences of LRTS Izmir", Proceedings of the World Tunnel Congress on Challenges for the 21st Century. Balkema, Rotterdam, Netherlands, May.
  19. Liu, P.F., Wang, S.Y., Shi, Y.F., Yang, J.S., Fu, J.Y. and Yang, F. (2019), "Tangential adhesion strength between clay and steel for various soil softnesses", J. Mater. Civ. Eng., 31(5), 04019048. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002680.
  20. Liu, P.F., Wang, S.Y., Hu, Q.X. and Zhong, J.Z. (2020), "Effect of dispersant on the tangential adhesion strength between clay and metal for EPB shield tunnelling", Tunn. Undergr. Sp. Tech., 95, 103144. https://doi.org/10.1016/j.tust.2019.103144.
  21. Martinelli, D., Peila, D. and Campa, E. (2015), "Feasibility study of tar sands conditioning for earth pressure balance tunnelling", J. Rock Mech. Geotech. Eng., 7(6), 684-690. https://doi.org/10.1016/j.jrmge.2015.09.002.
  22. Martinelli, D., Winderholler, R. and Peila, D. (2017), "Undrained behaviour of granular soils conditioned for EPB tunnelling - A new experimental procedure", Geomech. Tunn., 10(1), 81-89. https://doi.org/10.1002/geot.201600019.
  23. Martinelli, D., Todaro, C., Luciani, A. and Peila, D. (2019), "Use of a large triaxial cell for testing conditioned soil for EPBS tunnelling", Tunn. Undergr. Sp. Tech., 94, 103126. https://doi.org/10.1016/j.tust.2019.103126.
  24. Meng, Q., Qu, F. and Li, S. (2011), "Experimental investigation on viscoplastic parameters of conditioned sands in earth pressure balance shield tunneling", J. Mech. Sci. Technol., 25(9), 2259-2266. https://doi.org/10.1007/s12206-011-0611-9.
  25. Mori, L., Mooney, M. and Cha, M. (2018), "Characterizing the influence of stress on foam conditioned sand for EPB tunneling", Tunn. Undergr. Sp. Tech., 71, 454-465. https://doi.org/10.1016/j.tust.2017.09.018.
  26. Peila, D., Oggeri, C. and Borio, L. (2009), "Using the slump test to assess the behavior of conditioned soil for EPB tunneling", Environ. Eng. Geosci., 15(3), 167-174. https://doi.org/10.2113/gseegeosci.15.3.167.
  27. Peila, D. (2014), "Soil conditioning for EPB shield tunneling", KSCE J. Civ. Eng., 18(3), 831-836. https://doi.org/10.1007/s12205-014-0023-3.
  28. Qu, T.M., Feng, Y.T., Wang, Y. and Wang, M. (2019), "Discrete element modelling of flexible membrane boundaries for triaxial tests", Comput. Geotech., 115, 103154. https://doi.org/10.1016/j.compgeo.2019.103154.
  29. Qu, T.M., Di, S.C., Feng, Y.T., Wang, M. and Zhao, T.T. (2021), "Towards data-driven constitutive modelling for granular materials via micromechanics-informed deep learning", Int. J. Plast., 144, 103046. https://doi.org/10.1016/j.ijplas.2021.103046.
  30. Quebaud, S., Sibai, M. and Henry, J.P. (1998), "Use of chemical foam for improvements in drilling by earth-pressure balanced shields in granular soils". Tunn. Undergr. Sp. Tech., 13(2), 173-180. https://doi.org/10.1016/S0886-7798(98)00045-5.
  31. Terzaghi, K., Peck, B.R. and Mesri, G. (1996), Soil Mechanics in Engineering Practice (3rd Ed.), John Wiley & Sons, Inc, New York, NY, USA.
  32. Thewes, M. and Hollmann, F. (2016), "Assessment of clay soils and clay-rich rock for clogging of TBMs", Tunn. Undergr. Sp. Technol., 57, 122-128. https://doi.org/10.1016/j.tust.2016.01.010.
  33. Vinai, R., Oggeri, C. and Peila, D. (2008), "Soil conditioning of sand for EPB applications: A laboratory research". Tunn. Undergr. Sp. Technol., 23(3), 308-317. https://doi.org/10.1016/j.tust.2007.04.010.
  34. Wang, S.Y., Hu, Q.X., Wang, H.B., Thewes, M., Ge, L., Yang, J.S. and Liu, P.F. (2020), "Permeability characteristics of poorly graded sand conditioned with foam in different conditioning states", J. Test. Eval., 49(5), 3620-3636. https://doi.org/10.1520/JTE20190539
  35. Wang, H.B., Wang, S.Y., Zhong, J.Z., Qu, T.M., Liu, Z.R., Xu, T. and Liu, P.F. (2021), "Undrained compressibility characteristics and pore pressure calculation model of foam-conditioned sand", Tunn. Undergr. Sp. Tech., 118, 104161. https://doi.org/10.1016/j.tust.2021.104161.
  36. Xu, J.S. and Du, X.L. (2019), "Energy analysis of geosynthetic-reinforced slope in unsaturated soils subjected to steady flow", J. Cent. South Univ., 26, 1769-1779. https://doi.org/10.1007/s11771-019-4132-5.
  37. Yang, Y., Li, X.G. and Su, W.L. (2020), "Experimental investigation on rheological behaviours of bentonite- and CMC-conditioned sands", KSCE J. Civ. Eng., 24(6), 1914-1923. https://doi.org/10.1007/s12205-020-2035-5.
  38. Ye, X.Y., Wang, S.Y., Yang, J.S., Sheng, D.C. and Xiao, C. (2016), "Soil conditioning for EPB shield tunneling in argillaceous siltstone with high content of clay minerals: Case study", Int. J. Geomech., 17(4), 05016002.
  39. Zhang, L. (2014), "Study on rheological properties of conditioned sandy pebble soil based on DEM", PhD Dissertation, China University of Geosciences (Beijing), Beijing, China. (in Chinese)
  40. Zhang, X.D. (2009), "Construction technology of earth pressure balance shield in watery sandy stratum", Chinese J. Geotech. Eng., 31(9), 1445-1449. (in Chinese)
  41. Zhao, B.Y., Liu, D.Y. and Jiang, B. (2018), "Soil conditioning of waterless sand-pebble stratum in EPB tunnel construction", Geotech. Geol. Eng., 36, 2495-2504. https://doi.org/10.1007/s10706-018-0478-y
  42. Zhong, J.Z., Wang, S.Y., Liu, P.F. and Wang, H.B. (2021), "Mechanical behavior and rheology model of foam-conditioned gravelly sand in EPB shield tunneling", J. Harbin Inst. Technol., 53(11), 84-92. (in Chinese)
  43. Zhong, J.Z., Wang, S.Y., Liu, P.F., Liu, Z.R. and Xu, T. (2022), "Investigation of the dynamic characteristics of Muck during EPB shield tunnelling in a full chamber model using a CFD method", KSCE J. Civ. Eng., 26(9), 4103-4116. https://doi.org/10.1007/s12205-022-1300-1.
  44. Zumsteg, R., Plotze, M. and Puzrin, A.M. (2012), "Effect of soil conditioners on the pressure and rate-dependent shear strength of different clays". J. Geotech. Geoenviron. Eng., 138(9), 1138-1146. https://doi.org/10.1061/(ASCE)GT.1943-5606.00006.