DOI QR코드

DOI QR Code

The behaviour of a strip footing resting on geosynthetics-reinforced slopes

  • Hamed Yazdani (Faculty of Civil Engineering, Babol Noshirvani University of Technology) ;
  • Mehdi Ashtiani (Faculty of Civil Engineering, Babol Noshirvani University of Technology)
  • Received : 2023.03.03
  • Accepted : 2023.08.11
  • Published : 2023.09.25

Abstract

This study utilized small-scale physical model tests to investigate the impact of different types of geosynthetics, including geocell, planar geotextile, and wraparound geotextile, on the behaviour of strip footings placed on 0.8 m thick soil fills and backfills with a slope angle of 70°. Bearing capacity and settlement of the footing and failure mechanisms are discussed and evaluated. The results revealed that the bearing capacity of footings situated on both unreinforced and reinforced slopes increased with a greater embedment depth of the footing. For settlement ratios below 4%, the geocell reinforcement exhibited significantly higher stiffness, carrying greater loads and experiencing less settlement compared to the planar and wraparound geotextile reinforcements. However, the performance of geocell reinforcement was influenced by the number and length of the geocell layers. Increasing the geocell back length ratio from 0.44 to 0.84 significantly improved the bearing capacity of the footing located at the crest of the reinforced slope. Adequate reinforcement length, particularly for geocell, enhanced the bearing pressure of the footing and increased the stiffness of the slope, resulting in reduced deflections. Increasing the length of reinforcement also led to improved performance of the footing located on wraparound geotextile reinforced slopes. In all reinforcement cases, reducing the vertical spacing between reinforcement layers from 100 mm to 75 mm allowed the slope to withstand much greater loads.

Keywords

Acknowledgement

The authors would like to acknowledge the financial support provided by Babol Noshirvani University of Technology under grant No. BNUT/395032/00.

References

  1. Adams, M.T. and Collin, J.G. (1997), "Large model spread footing load tests on geosynthetic reinforced soil foundations", J. Geotech. Geoenviron. Eng., 123(1), 66-72. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:1(66).
  2. Alamshahi, S. and Hataf, N. (2009), "Bearing capacity of strip footings on sand slopes reinforced with geogrid and grid-anchor", Geotext. Geomembranes., 27(3), 217-226. https://doi.org/10.1016/j.geotexmem.2008.11.011.
  3. Ardakani, A. and Namaei, A. (2021), "Numerical investigation of geocell reinforced slopes behavior by considering geocell geometry effect", Geomech. Eng., 24(6), 589-597. https://doi.org/10.12989/gae.2021.24.6.589.
  4. Ashtiani, M., Ghalandarzadeh, A. and Towhata, I. (2015), "Centrifuge modeling of shallow embedded foundations subjected to reverse fault rupture", Can. Geotech. J., 53(3), 505-519. https://doi.org/10.1139/cgj-2014-0444.
  5. Biswas, S. and Mittal, S. (2017), "Square footing on geocell reinforced cohesionless soils", Geomech. Eng., 13(4), 641-651. https://doi.org/10.12989/gae.2017.13.4.641.
  6. Chen, R. and Chiu, Y. (2008), "Model tests of geocell retaining structures", Geotext. Geomembranes, 26(1), 56-70. https://doi.org/10.1016/j.geotexmem.2007.03.001.
  7. Choudhary, A., Jha, J. and Gill, K. (2010), "Laboratory investigation of bearing capacity behaviour of strip footing on reinforced flyash slope", Geotext. Geomembranes, 28(4), 393-402. https://doi.org/10.1016/j.geotexmem.2009.09.007.
  8. Dash, S.K., Rajagopal, K. and Krishnaswamy, N. (2007), "Behaviour of geocell-reinforced sand beds under strip loading", Can. Geotech. J., 44(7), 905-916. https://doi.org/10.1139/t07-035.
  9. El Sawwaf, M.A. (2007), "Behavior of strip footing on geogrid-reinforced sand over a soft clay slope", Geotext. Geomembranes, 25(1), 50-60. https://doi.org/10.1016/j.geotexmem.2006.06.001.
  10. Fahliani, H.K., Arvin, M.R., Hataf, N. and Khademhosseini, A. (2021), "Experimental Model Studies on Strip Footings Resting on Geocell-Reinforced Sand Slopes", Int. J. Geosynth. Ground Eng., 7(2), 1-15. https://doi.org/10.1007/s40891-021-00270-1.
  11. Hedge, A. and Sitharam, T.G. (2016), "Behaviour of geocell reinforced soft clay bed subjected to incremental cyclic loading", Geomech. Eng., 10(4), 405-422. https://doi.org/10.12989/gae.2016.10.4.405.
  12. Huang, C.C., Tatsuoka, F. and Sato, Y. (1994), "Failure mechanisms of reinforced sand slopes loaded with a footing", Soils Found., 34(2), 27-40. https://doi.org/10.3208/sandf1972.34.2_27.
  13. Javankhoshdel, S. and Bathurst, R.J. (2017), "Deterministic and probabilistic failure analysis of simple geosynthetic reinforced soil slopes", Geosynth. Int., 24(1), 14-29. https://doi.org/10.1680/jgein.16.00012.
  14. Jesmani, M., Kamalzare, M. and Sarbandi, B.B. (2016), "Seismic response of geosynthetic reinforced retaining walls", Geomech. Eng., 10(5), 635-655. https://doi.org/10.12989/gae.2016.10.5.635.
  15. Kazemian, T. and Arvin, M.R. (2019), "Three-dimensional stability of locally loaded geocell-reinforced slopes by strength reduction method", Geomech. Geoeng., 14(3), 185-201. https://doi.org/10.1080/17486025.2019.1581275.
  16. Khalaj, O., Tafreshi, S.N.M., Masek, B. and Dawson, A.R. (2015), "Improvement of pavement foundation response with multi layers of geocell reinforcement: Cyclic plate load test", Geomech. Eng., 9(3), 373-395. https://doi.org/10.12989/gae.2015.9.3.373.
  17. Kumar, A., Singh, P. and Chatterjee, K. (2019), "Ground improvement using geocells to enhance traffic ability in desert soils", Geomech. Eng., 19(1), 71-78. https://doi.org/10.12989/gae.2019.19.1.071.
  18. Latha, M.G., Dash, S.K. and Rajagopal, K. (2008), "Equivalent continuum simulations of geocell reinforced sand beds supporting strip footings", Geotech. Geol. Eng., 26(4), 387-398. https://doi.org/10.1007/s10706-008-9176-5.
  19. Latha, M.G., Dash, S.K. and Rajagopal, K. (2009), "Numerical simulation of the behavior of geocell reinforced sand in foundations", Int. J. Geomech., 9(4), 143-152. https://doi.org10.1061/(ASCE)1532-3641(2009)9:4(143).
  20. Latha, G.M. (2011), "Design of geocell reinforcement for supporting embankments on soft ground", Geomech. Eng., 3(2), 117-139. https://doi.org/10.12989/gae.2011.3.2.117.
  21. Lee, K. and Manjunath, V. (2000), "Experimental and numerical studies of geosynthetic-reinforced sand slopes loaded with a footing", Can. Geotech. J., 37(4), 828-842. https://doi.org/10.1139/t00-016.
  22. Mehrjardi, G.T., Ghanbari, A. and Mehdizadeh, H. (2016), "Experimental study on the behaviour of geogrid-reinforced slopes with respect to aggregate size", Geotext. Geomembranes, 44(6), 862-871. https://doi.org/10.1016/j.geotexmem.2016.06.006.
  23. Michalowski, R.L. (1997), "Stability of uniformly reinforced slopes", J. Geotech. Geoenviron. Eng., 123(6), 546-556. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:6(546).
  24. Pokharel, S.K., Han, J., Leshchinsky, D., Parsons, R.L. and Halahmi, I. (2010), "Investigation of factors influencing behavior of single geocell-reinforced bases under static loading", Geotext. Geomembranes, 28(6), 570-578. https://doi.org/10.1016/j.geotexmem.2010.06.002.
  25. Sarfarazi, V., Tabaroei, A. and Asgari, K. (2022); "Discrete element modeling of strip footing on geogrid-reinforced soil", Geomech. Eng., 29(4), 435-449. https://doi.org/10.12989/gae.2022.29.4.435.
  26. Saride, S., Pradhan, S., Sitharam, T.G. and Puppala, A.J. (2013), "Numerical analysis of geocell reinforced ballast overlying soft clay subgrade", Geomech. Eng., 5(3), 263-281. https://doi.org/10.12989/gae.2013.5.3.263.
  27. Sharma, R., Chen, Q., Abu-Farsakh, M. and Yoon, S. (2009), "Analytical modeling of geogrid reinforced soil foundation", Geotext. Geomembranes, 27(1), 63-72. https://doi.org/10.1016/j.geotexmem.2008.07.002.
  28. Song, F., Liu, H.B., Hu, H.B. and Xie, Y.L. (2018a), "Centrifuge tests of geocell-reinforced retaining walls at limit equilibrium", J. Geotech. Geoenviron. Eng., 144(3), 04018005. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001849.
  29. Song, F., Liu, H.B., Ma, L.Q. and Hu, H.B. (2018b), "Numerical analysis of geocell-reinforced retaining wall failure modes", Geotext. Geomembranes, 46(3), 284-296. https://doi.org/10.1016/j.geotexmem.2018.01.004.
  30. Song, F. and Tian, Y.H. (2019), "Three-dimensional numerical modelling of geocell reinforced soils and its practical application", Geomech. Eng., 17(1), 1-9. https://doi.org/10.12989/gae.2019.17.1.001.
  31. Song, F., Jin, Y. T., Liu, H.B. and Liu, J. (2020), "Analyzing the deformation and failure of geosynthetic-encased granular soil in the triaxial stress condition", Geotext. Geomembr Geomembranes, 48(6), 886-896. https://doi.org/10.1016/j.geotexmem.2020.06.007.
  32. Song F., Chen W.S., Nie Y.W. and Ma L. Q. (2022), "Evaluation of required stiffness and strength of cellular geosynthetics", Geosynth. Int., 29(3), 217-228. https://doi.org/10.1680/jgein.21.00032
  33. Tafreshi, S.M. and Dawson, A. (2010), "Comparison of bearing capacity of a strip footing on sand with geocell and with planar forms of geotextile reinforcement", Geotext. Geomembranes, 28(1), 72-84. https://doi.org/10.1016/j.geotexmem.2009.09.003.
  34. Tang, X. and Yang, M. (2013), "Investigation of flexural behavior of geocell reinforcement using three-layered beam model testing", Geotech. Geol. Eng., 31(2), 753-765. https://doi.org/10.1007/s10706-013-9625-7.
  35. Turker, E., Sadoglu, E., Cure, E. and Uzuner, B.A. (2014), "Bearing capacity of eccentrically loaded strip footings close to geotextile-reinforced sand slope", Can. Geotech. J., 51(8), 884-895. https://doi.org/10.1139/cgj-2014-0055
  36. Viswanadham, B. and Konig, D. (2004), "Studies on scaling and instrumentation of a geogrid", Geotext. Geomembranes, 22(5), 307-328. https://doi.org/10.1016/S0266-1144(03)00045-1.
  37. Viswanadham, B. and Konig, D. (2009), "Centrifuge modeling of geotextile-reinforced slopes subjected to differential settlements", Geotext. Geomembranes, 27(2), 77-88. https://doi.org/10.1016/j.geotexmem.2008.09.008
  38. Won, M.S., Lee, O., Kim, Y.S. and Choi, S. (2016), "An 12 year long term study on the external deformation behavior of Geosynthetic reinforced soil (GRS) walls", Geomech. Eng., 10(5), 565-575. https://doi.org/10.12989/gae.2016.10.5.565.
  39. Yang, K.H., Zornberg, J., Liu, C.N. and Lin, H.D. (2012), "Stress distribution and development within geosynthetic-reinforced soil slopes", Geosynth. Int., 19(1), 62-78. https://doi.org/10.1680/gein.2012.19.1.62.
  40. Yazdani, H. and Ashtiani, M. (2022), "Experimental Study on the Effect of Geocell on the Behavior of the Strip Footing Resting on the Soil Slope", J. Transp. Infra. Eng., 8(3), 91-109. https://doi.org/10.22075/JTIE.2022.27837.1609.
  41. Yoo, C. (2001), "Laboratory investigation of bearing capacity behavior of strip footing on geogrid-reinforced sand slope", Geotext. Geomembranes, 19(5), 279-298. https://doi.org/10.1016/S0266-1144(01)00009-7.
  42. Zhang, L., Zhao, M., Zou, X. and Zhao, H. (2009), "Deformation analysis of geocell reinforcement using Winkler model", Comput. Geotech., 36(6), 977-983. https://doi.org/10.1016/j.compgeo.2009.03.005.