DOI QR코드

DOI QR Code

Development of Dolphin Click Signal Classification Algorithm Based on Recurrent Neural Network for Marine Environment Monitoring

해양환경 모니터링을 위한 순환 신경망 기반의 돌고래 클릭 신호 분류 알고리즘 개발

  • Seoje Jeong (Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology (OST) School, Korea Maritime & Ocean University) ;
  • Wookeen Chung (Department of Energy and Resources Engineering, Korea Maritime & Ocean University) ;
  • Sungryul Shin (Department of Energy and Resources Engineering, Korea Maritime & Ocean University) ;
  • Donghyeon Kim (Underwater Vehicle Research Center, Korea Maritime & Ocean University) ;
  • Jeasoo Kim (Department of Ocean Engineering, Korea Maritime & Ocean University) ;
  • Gihoon Byun (Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology (OST) School, Korea Maritime & Ocean University) ;
  • Dawoon Lee (Department of Energy and Resources Engineering, Korea Maritime & Ocean University)
  • 정서제 (한국해양대학교 해양과학기술융합학과) ;
  • 정우근 (한국해양대학교 에너지자원공학과) ;
  • 신성렬 (한국해양대학교 에너지자원공학과) ;
  • 김동현 (한국해양대학교 수중운동체특화연구센터) ;
  • 김재수 (한국해양대학교 해양공학과) ;
  • 변기훈 (한국해양대학교 해양과학기술융합학과) ;
  • 이다운 (한국해양대학교 에너지자원공학과)
  • Received : 2023.07.03
  • Accepted : 2023.08.10
  • Published : 2023.08.31

Abstract

In this study, a recurrent neural network (RNN) was employed as a methodological approach to classify dolphin click signals derived from ocean monitoring data. To improve the accuracy of click signal classification, the single time series data were transformed into fractional domains using fractional Fourier transform to expand its features. Transformed data were used as input for three RNN models: long short-term memory (LSTM), gated recurrent unit (GRU), and bidirectional LSTM (BiLSTM), which were compared to determine the optimal network for the classification of signals. Because the fractional Fourier transform displayed different characteristics depending on the chosen angle parameter, the optimal angle range for each RNN was first determined. To evaluate network performance, metrics such as accuracy, precision, recall, and F1-score were employed. Numerical experiments demonstrated that all three networks performed well, however, the BiLSTM network outperformed LSTM and GRU in terms of learning results. Furthermore, the BiLSTM network provided lower misclassification than the other networks and was deemed the most practically appliable to field data.

본 연구에서는 해양 모니터링 중에 기록된 돌고래 클릭 신호를 분류하기 위해 순환 신경망(RNN)을 적용하는 방법을 검토했다. 클릭 신호 분류의 정확도를 높이기 위해 단일 시계열 자료를 분수 푸리에 변환을 사용하여 분수 영역으로 변환하여 특징을 확장했으며, 분류를 위한 최적의 네트워크를 결정하기 위해 세 가지 순환 신경망 모델(LSTM, GRU, BiLSTM)을 비교 분석하였다. 순환 신경망 모델의 입력 자료로써 이용된 분수 영역 자료의 경우, 분수 푸리에 변환 시 회전 각도에 따라 다른 특성을 가지므로, 각 네트워크 모델에 따라 우수한 성능을 가지는 회전 각도 범위를 분석했다. 이때 네트워크 성능 분석을 위해 정확도, 정밀도, 재현율, F1-점수와 같은 성능 평가 지표를 도입했다. 수치실험 결과, 세 가지 네트워크 모두 높은 성능을 보였으며, BiLSTM 네트워크가 LSTM, GRU에 비해 뛰어난 학습 결과를 제공했다. 마지막으로, 현장 자료 적용 가능성 측면에서 BiLSTM 네트워크가 다른 네트워크에 비해 낮은 오탐지 결과를 제공하였다.

Keywords

Acknowledgement

이 논문은 2023년도 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(RS-2023-00259633).

References

  1. Almeida, L. B., 1994, The fractional Fourier transform and time-frequency representations, IEEE Trans. Signal Process, 42(11), 3084-3091. doi: 10.1109/78.330368
  2. Au, W. W., and Herzing, D. L., 2003, Echolocation signals of wild Atlantic spotted dolphin (Stenella frontalis), J. Acoust. Soc. Am., 113(1), 598-604. https://doi.org/10.1121/1.1518980
  3. Caruso, F., Dong, L., Lin, M., Liu, M., Gong, Z.,Xu, W., Alonge, G., and Li, S., 2020, Monitoring of a Nearshore Small Dolphin Species Using Passive Acoustic Platforms and Supervised Machine Learning Techniques, Front. Mar. Sci., 7, 267. https://doi.org/10.3389/fmars.2020.00267
  4. Cho, K., Van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y., 2014, Learning phrase representations using RNN encoder-decoder for statistical machine translation, arXiv preprint arXiv:1406.1078. https://doi.org/10.48550/arXiv.1406.1078
  5. Choi, K. H., Yoon, Y. G., Kim, S., Kim, H., Cho, J. W., Bae, H. S., and Park, K., 2019, Analysis of echolocation click signals of Indo-Pacific bottlenose dolphin (Tursiops aduncus) in Jeju Island, J. Acoust. Soc. Korea, 38(1), 56-65 (in Korean with English abstract). https://doi.org/10.7776/ASK.2019.38.1.056
  6. Cui, Q., Yang, B., Liu, B., Li, Y., and Ning, J., 2022, Tea Category Identification Using Wavelet Signal Reconstruction of Hyperspectral Imagery and Machine Learning, Agriculture, 12(8), 1085. https://doi.org/10.3390/agriculture12081085
  7. Dey, R., and Salem, F. M., 2017, Gate-variants of gated recurrent unit (GRU) neural networks, In 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), 1597-1600. https://doi.org/10.48550/arXiv.1701.05923
  8. Ditria, E. M., Buelow, C. A., Gonzalez-Rivero, M., and Connolly, R. M., 2022, Artificial intelligence and automated monitoring for assisting conservation of marine ecosystems: A perspective, Front. Mar. Sci., 9, 918104. https://doi.org/10.3389/fmars.2022.918104
  9. Frasier, K. E., Roch, M. A., Soldevilla, M. S., Wiggins, S. M., Garrison, L. P., and Hildebrand, J. A., 2017, Automated classification of dolphin echolocation click types from the Gulf of Mexico, PLoS Comput. Biol., 13(12), e1005823. https://doi.org/10.1371/journal.pcbi.1005823
  10. Graves, A., Mohamed, A. R., and Hinton, G., 2013, Speech recognition with deep recurrent neural networks, In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 6645-6649. doi: 10.1109/ICASSP.2013.6638947
  11. Hochreiter, S., and Schmidhuber, J., 1997, Long short-term memory, Neural Comput, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
  12. Jiang, J. J., Bu, L. R., Duan, F. J., Wang, X. Q., Liu, W., Sun, Z. B., and Li, C. Y., 2019, Whistle detection and classification for whales based on convolutional neural networks, Applied Acoustics, 150, 169-178. https://doi.org/10.1016/j.apacoust.2019.02.007
  13. Jin, C., Kim, M., Jang, S., and Paeng, D. G., 2022, Semantic segmentation-based whistle extraction of indo-pacific bottlenose dolphin residing at the coast of jeju island, Ecol. Indic, 137, 108792. doi: 10.1016/j.ecolind.2022.108792
  14. Jozefowicz, R., Zaremba, W., and Sutskever, I., 2015, An empirical exploration of recurrent network architectures, In International conference on machine learning, PMLR, 2342-2350. https://proceedings.mlr.press/v37/jozefowicz15.html
  15. Kavanagh, A. S., Nykanen, M., Hunt, W., Richardson, N., and Jessopp, M. J., 2019, Seismic surveys reduce cetacean sightings across a large marine ecosystem, Scientific Reports, 9(1), 19164. https://doi.org/10.1038/s41598-019-55500-4
  16. Kim, D., Kim, J. S., and Song, J., 2022a, Cancellation of dolphin sonar clicks in a communication signal based on adaptive time reversal processing, JASA Express Lett, 2(5), 056001. https://doi.org/10.1121/10.0010375
  17. Kim, J. H., and Kim, J. Y., 2022, Comparative analysis of performance of BI-LSTM and GRU algorithm for predicting the number of Covid-19 confirmed cases, Journal of the Korea Institute of Information and Communication Engineering, 26(2), 187-192 (in Korean with English abstract). https://doi.org/10.6109/jkiice.2022.26.2.187
  18. Kim, J. S., Yoon, Y. G., Han, D. G., La, H. S., and Choi, J. W., 2022b, Classification of bearded seals signal based on convolutional neural network, J. Acoust. Soc. Korea, 41(2), 235-241 (in Korean with English abstract). https://doi.org/10.7776/ASK.2022.41.2.235
  19. Namias, V., 1980, The fractional order Fourier transform and its application to quantum mechanics, IMA J. Appl. Math., 25(3), 241-265. https://doi.org/10.1093/imamat/25.3.241
  20. Ozaktas, H. M., and Kutay, M. A., 2001, The Fractional Fourier Transform, In 2001 European Control Conference (ECC). IEEE, 1477-1483. doi: 10.23919/ECC.2001.7076127
  21. Radford, C. A., Jeffs, A. G., Tindle, C. T., and Montgomery, J. C., 2008, Temporal patterns in ambient noise of biological origin from a shallow water temperate reef, Oecologia, 156(4), 921-929. doi: 10.1007/s00442-008-1041-y
  22. Read, J., Pfahringer, B., Holmes, G., and Frank, E., 2011, Classifier chains for multi-label classification, Mach. Learn., 85, 333-359. https://doi.org/10.1007/s10994-011-5256-5
  23. Saxena, R., and Singh, K, 2005, Fractional Fourier transform: A novel tool for signal processing, J. Indian Inst. Sci., 85(1), 11-26. https://www.researchgate.net/publication/228341636_Fractional_Fourier_transform_A_novel_tool_for_signal_processing
  24. Schmidhuber, J., 2015, Deep learning in neural networks: An overview, Neural Networks, 61, 85-117. https://doi.org/10.1016/j.neunet.2014.09.003
  25. Schuster, M., and Paliwal, K. K., 1997, Bidirectional recurrent neural networks, IEEE Trans. Signal Process, 45(11), 2673-2681. https://ieeexplore.ieee.org/document/650093 https://doi.org/10.1109/78.650093
  26. Sugimatsu, H., Kojima, J., Ura, T., Bahl, R., and Tomuro, S., 2015, Development of an automatic discrimination method of the bio-sonar clicks of Irrawaddy dolphin (Orcaella brevirostris) from various types of boat noises, OCEANS 2015 - MTS/IEEE Washington, 1-9. doi: 10.23919/OCEANS.2015.7404489
  27. Thomas, M., Martin, B., Kowarski, K., Gaudet, B., and Matwin, S., 2019, An end-to-end approach for true detection of low frequency marine mammal vocalizations, J. Acoust. Soc. Am., 146(4), 2959. https://doi.org/10.1121/1.5137278
  28. Tian, L., 2021, Seismic spectral decomposition using short-time fractional Fourier transform spectrograms, J. Appl. Geophys., 192, 104400. https://doi.org/10.1016/j.jappgeo.2021.104400
  29. Wenz, G. M., 1962, Acoustic ambient noise in the ocean: Spectra and sources, J. Acoust. Soc. Am., 34(12), 1936-1956. https://doi.org/10.1121/1.1909155
  30. Zhai, M. Y., 2014. Seismic data denoising based on the fractional Fourier transformation, J. Appl. Geophys., 109, 62-70. https://doi.org/10.1016/j.jappgeo.2014.07.012