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Abstract  

Little attention appears to have been paid to the relevance of learning a good representation function in 

solving long tail tasks. Therefore, we propose a new loss function to ensure a good representation is learnt 

while learning to classify. We call this loss function Triplet Class-Wise Difficulty-Based (TriCDB-CE) Loss. It 

is a combination of the Triplet Loss and Class-wise Difficulty-Based Cross-Entropy (CDB-CE) Loss. We prove 

its effectiveness empirically by performing experiments on three benchmark datasets. We find improvement in 

accuracy after comparing with some baseline methods. For instance, in the CIFAR-10-LT, 7 percentage points 

(pp) increase relative to the CDB-CE Loss was recorded. There is more room for improvement on Places-LT. 
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1. INTRODUCTION 

Many popular image datasets like ImageNet [1] are balanced datasets. Models do not perform as good as when 

compared with pre-deployment results. One of the reasons is attributed to the distribution of the datasets used 

in creating these models. The problem is that data in the real world seldom have a balanced distribution. A 

more natural distribution is the Pareto or long tail distribution. Data is said to have a long tail when there are a 

few classes that greatly outnumber the vast majority of classes in terms of their individual frequencies. 

To deal with class imbalance, various techniques have been proposed. An easy fix is to sample. Another is 

using cost-sensitive approaches. These methods make it relatively more costly for a model to predict tail class 

instances wrongly than for head class instances. These two approaches were found not to produce results that 

reflect their underlying assumption [2]—few-shot classes are underrepresented and many-shot classes are 

sufficiently diverse. [2] realized that the general trend of the accuracy did mirror the class-wise frequency. 

However, the trend was not perfect. There were cases of head classes recording lower accuracies compared 

with some tail classes. In response, they proposed a class difficulty-based weighting scheme [2]. 

We employ this weighting strategy, as will be seen in Section 3, in our proposed loss function. Approaches 

utilizing metric learning [3] and knowledge transfer [4] concepts have been used in handling long tail 
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recognition tasks lately. We add another objective in the form of Triplet Loss [5]. Although this may not 

directly impact the classification, we believe it will help the model learn the features better. This leads to better 

representation of data. Having data well represented and clearly delineated can enhance classification accuracy. 

We introduce the datasets—CIFAR-10-LT, CIFAR-100-LT, and Places-LT [6]—in Section 4. In Section 5, 

we show the results. TriCDB-CE performed well on the CIFAR datasets but lagged behind in Places-LT. 

 

2. RELATED WORK 

There have been diverse ways of grouping approaches to long tail classification. However, these three have 

been prominently noted: data resampling, class-balanced losses, and metric learning and knowledge transfer. 

The most popular approach for dealing with data imbalance is data resampling. This class of solutions 

strives to create a balance in an imbalance dataset prior to training the model. There is undersampling [7] where 

some of the samples belonging to the dominant classes are gotten rid of. Conversely, there is also oversampling 

[8] which increases the number of minority class samples in some fashion such that their frequencies become 

similar to those of the majority classes. Also, there is instance-balanced sampling where all instances have the 

same probability of being sampled. In [9], they utilized a sampling approach called progressively-balanced 

sampling. It starts off with instance-balanced sampling and gradually tilts toward a more class-balanced 

sampling strategy until it fully uses class-balanced sampling. The downside of using undersampling is that 

there is a probability of losing some relevant information pertaining to the abundant classes whiles with 

oversampling, there is a risk of overfitting in the case of the few-shot classes. 

Class-balanced losses tackle the imbalance problem by making adjustments to the loss function. It does this 

by assigning weights. Typically, tail classes get to have larger weights while the head classes get lesser weights. 

The weighting is often based on the number of instances per class. Class-Balanced (CB) Loss [10] rather ties 

the weighting to the number of samples deemed effective. Similarly, [2] defined the weights of the classes to 

be proportional to the classes’ difficulties. Aside classes, weights can be tied to the difficulty of individual 

samples, as is the case for Focal Loss [11]. [12] approached the problem of class imbalance from the 

perspective of domain adaptation thus, proposed a weighting strategy to that effect. This produces a larger 

margin for the tail classes while the head classes get a smaller margin. A fundamental assumption of many of 

this class of solutions is that the minority class lacks diversity, which may not be true always. 

Metric learning and transfer learning provide another means of resolving class imbalance. The deficit in 

tail classes means a higher probability of absence of critical features. Transfer learning thus, transfers 

knowledge acquired from the many-shot classes to the few-shot classes [13]. With the aid of a Generative 

Adversarial Network (GAN) [14] translation of head-to-tail class samples in order to create balance has been 

achieved. Knowledge distillation [15], under knowledge transfer, has also been used for long tail classification. 

Metric learning is about learning a representation function that represents data such that instances that belong 

together are close while those that are different are placed further from the group in representation space. The 

Range Loss [3] is a loss function that seeks to increase the dissimilarity of two class centers in a mini batch, 

while making classes more consistent by lessening the largest intra-class distances. 

There are other approaches which may not fall under any of the above categories. A typical example is [9]. 

They decoupled model training and made it a two-stage process: representation learning and then classifier 

retraining. Others focus on designing special classifiers like the τ-normalized classifier [9]. The Balancing 

GAN [16] generates more examples to restore balance. 

The proposed loss function draws from the benefits of cost-sensitive learning and metric learning. 
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3. THEORY 

3.1 CLASS-WISE DIFFICULTY-BASED WEIGHTING 

To measure a class’ difficulty, the model is run against a balanced validation dataset. The class-wise 

accuracy is then used to gauge how difficult each class is and how biased the model is towards the majority 

classes. For a class 𝑐, its difficulty at epoch 𝑡 is found by subtracting its accuracy 𝐴𝑐,𝑡 on a validation dataset 

from one. This is denoted by 𝑑𝑐,𝑡 (1). We then raise the difficulty 𝑑𝑐,𝑡 to the power of a hyperparameter 𝜏.  

 

𝑑𝑐,𝑡 = 1 − 𝐴𝑐,𝑡  (1) 

 

The value of 𝜏 depends on the imbalance ratio 𝜇 and the level of class difficulty. Since class difficulty 

changes as a model trains, determining an appropriate 𝜏 value prior to the start of training may be difficult. 

In order to calculate the value of 𝜏 on the fly, a bias term is computed. 

This bias term gauges the level of imbalance regarding the performance of the model. If the model is doing 

well on all classes, the value of the bias reduces, and has a floor value of close to zero. Conversely, if the model 

is not performing evenly across all 𝑘 classes, the bias increases. The bias at an epoch 𝑡, represented by 𝑏𝑡 

as shown in (2), is the ratio of the maximum accuracy among the classes to the minimum accuracy among the  

  

𝑏𝑡 =
𝑚𝑎𝑥1,2,…𝑘𝐴𝑐,𝑡

𝑚𝑖𝑛1,2,…𝑘′𝐴𝑐′,𝑡 + 0.0001
− 1 (2) 

 

classes. We add 0.0001 to the denominator to prevent division by zero. 𝑏𝑡 is then passed to the Sigmoid 

function to get 𝜏. Finally, the value of the weights for each class can be calculated. The weight 𝑤 is given by 

the difficulty 𝑑𝑐,𝑡 with the exponent of 𝜏. (3) shows the formula for calculating the weight for a class 𝑐. 

 

𝑤𝑐,𝑡 = 𝑑𝑐,𝑡
𝜏 (3) 

 

3.2 CLASS-WISE DIFFICULTY-BASED CROSS-ENTROPY LOSS 

Assume a model is being trained on data where 𝑥𝑖 is 𝑖th the sample and 𝑦𝑖 is the 𝑖th label. Passing a mini 

batch from the dataset through the network at epoch 𝑡 yields an output 𝑧 = {𝑧1,𝑡, 𝑧2,𝑡, … , 𝑧𝑘,𝑡}, denoting the 

prediction of the model. The Softmax function converts 𝑧 into a probability distribution {𝑝1,𝑡, 𝑝2,𝑡, … , 𝑝𝑘,𝑡} 

over k classes. Since the weighting scheme used for this work is the Class-Wise Difficulty-Based weighting 

from (3), the Class-Wise Difficulty-Based Cross-Entropy (CDB-CE) Loss for a class 𝑐 is given in (4). 

 

𝐿𝐶𝐷𝐵−𝐶𝐸 = −𝑤𝑐,𝑡 log 𝑝𝑐,𝑡  (4) 

 

We modify the objective by complementing the CDB-CE Loss by the inclusion of the Triplet Loss. 

 

3.3 TRIPLET LOSS 

The objective of the Triplet Loss [5] is to learn appropriate representations of data. It adjusts the weights 

of the model based on the produced embeddings. The embeddings are the output of the backbone as shown in 

Figure 1. Triplet Loss seeks to cluster instances of one class around the same region while simultaneously 

increasing the distance between different classes. The distance between a pair of samples 𝑥𝑖 and 𝑥𝑗 with 

feature embeddings 𝑓𝑖 and 𝑓𝑗 respectively is the squared L2 distance between them i.e., ‖𝑓𝑖 − 𝑓𝑗‖
2

2
. 
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To compute the Triplet Loss value for a mini batch of data, sets of triplets must be generated from the batch. 

Then (5) is used to compute the value. Each triplet has an anchor 𝑥𝑎 and a positive sample 𝑥𝑝, both of the 

 

𝐿𝑇𝑟𝑖 = max(‖𝑓𝑎 − 𝑓𝑝‖2
2 − ‖𝑓𝑎 − 𝑓𝑛‖2

2 + 𝛼, 0) (5) 

 

same class, and a negative sample 𝑥𝑛 of another class. This function makes use of a margin constraint 𝛼. 

This ensures 𝑥𝑛 is far from the anchor class by a distance with floor value 𝛼 while 𝑥𝑝 gets closer. 

 

3.3 TRIPLET CLASS-WISE DIFFICULTY-BASED CROSS-ENTROPY LOSS 

We present this new loss function, Triplet Class-Wise Difficulty-Based Cross-Entropy (TriCDB-CE) Loss to 

improve classification performance, especially for long tail datasets. This loss functions combines the Triplet 

Loss and CDB-CE Loss functions to define a new objective for models to train with. This is given as: 

 

𝐿𝑇𝑟𝑖𝐶𝐷𝐵−𝐶𝐸 = 𝜆𝐿𝑇𝑟𝑖 + 𝐿𝐶𝐷𝐵−𝐶𝐸  (6) 

 

where λ is a hyperparameter to regulate trade-off between the two losses. As a combination of two loss 

functions, as shown in Figure 1, we expect the two objectives working together to yield better results. While 

𝐿𝑇𝑟𝑖 causes the model to learn better embeddings, 𝐿𝐶𝐷𝐵−𝐶𝐸 will focus on the classifier. The model weights 

will not only be tuned for classifying data correctly, they will also be adjusted such that the model will be able 

to separate the samples into their respective classes thereby improving classification accuracy. 

Not all triplets in a batch have their loss value computed. In our experiments, triplets that violate the margin 

constraint are the ones for which a loss value was calculated and used to update the weights. We do this because 

there is no need for learning from triplets with well-positioned samples. 

 

4. EXPERIMENTS 

We used these datasets: CIFAR-10, 

CIFAR-100, and Places-LT, as proof of the 

loss function’s performance. 

CIFAR [17] datasets are popular 

benchmark datasets. CIFAR-10 has ten classes and CIFAR-100 has100 classes. We created CIFAR-10-LT and 

CIFAR-100-LT out of the CIFAR-10 and CIFAR-100 datasets respectively based on [2]. The model we used 

was ResNet-32 [18]. The training regime also followed [2]. 

The Places-LT [6] is an imbalanced dataset created out of the Places-2 [19] dataset. It has 365 categories 

or classes. We use an ImageNet-pretrained ResNet-152 [18] as the training model. We followed a training 

strategy close to that of [6]. However, we used 90 epochs and a batch size of 64. The model was optimized 

using SGD with an initial learning rate of 0.1. Also, we decayed the learning rate by 0.1 after every 30 epochs. 

 

5. RESULTS AND DISCUSSION 

To determine an appropriate value for the Triplet Loss multiplier, we experimented on CIFAR-100-LT (μ 

= 100). We chose 0.25, 0.50, 0.75, and 1.00. We reported the scores on accuracy, precision, recall, and F1 

score for each of the multiplier values as can be seen in Table 1. The accuracies for 0.25 and 1.00 recorded the 

highest value of 0.41. The scores for recall, 0.41, and F1 score, 0.38, for 1.00 were the highest. The trend 

observed in the F1 scores suggests a positive correlation with the multiplier. This we attribute to the 

 

    

       

          

         

        

       
         

Figure 1. An overview of the proposed framework 
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contribution of the Triplet Loss. Thus, for the remainder of the experiments, λ was set to 1.00. We chose the 

optimal numeric value of 𝜏 for each imbalance ratio as found in [2]. Aside CIFAR-100-LT, we resorted to 

using the dynamic way for determining a value for 𝜏. 

 

Table 1. Accuracy, Precision, Recall & F1 Score for Different λ Values on CIFAR-100-LT 

λ Accuracy Precision Recall F1 Score 

0.25 0.40 ± 0.01 0.44 ± 0.01 0.40 ± 0.01 0.36 ± 0.01 

0.50 0.41 ± 0.01 0.45 ± 0.01 0.40 ± 0.01 0.37 ± 0.01 

0.75 0.40 ± 0.01 0.44 ± 0.01 0.40 ± 0.01 0.37 ± 0.01 

1.00 0.41 ± 0.01 0.45 ± 0.02 0.41 ± 0.01 0.38 ± 0.01 

 

We also experimented with different imbalance ratios. The imbalance ratios used were: 200, 100, 50, and 

10. As mentioned earlier, the higher the imbalance ratio the more extreme the imbalance is. This can be 

observed in the results presented in Table 2. All the metrics suggest an inverse relationship with the imbalance 

ratio. The imbalance ratio of 10 recorded the highest value across all metrics. This ratio is the most balanced 

so the model can easily classify the samples, as compared to the more extreme ones like 200. 

 

Table 2. Accuracy, Precision, Recall & F1 Score for Different μ Values on CIFAR-10-LT 

 

In Figure 2, we compare our proposed loss, TriCDB-CE with the CDB-CE. After three runs, on average, 

TriCDB-CE has an edge over CDB-CE across all 

metrics excluding precision. TriCDB-CE had the 

following scores for accuracy, recall, and F1 score: 0.41, 

0.41, and 0.38 respectively. The average precision core 

for both was 0.45. The difference in values across the 

metrics may seem marginal. This proves the positive 

impact of the modification of the objective. 

We compare TriCDB-CE with Focal Loss [11], CFS 

[20], CB Loss [10], LDAM [21], CDB-CE [2] in Table 

3. These experiments were performed on CIFAR-10-LT 

and CIFAR-100-LT. We considered their accuracies. 

For CIFAR-100-LT, it can be seen that TriCDB-CE 

was at par with LDAM-DRW as both had 0.42. They 

outperformed the other methods. However, for CIFAR-

10-LT, TriCDB-CE significantly outperformed the other methods. It had an accuracy of 0.72. Even though 

CDB-CE [2] introduced the novel weighting scheme based on class difficulty, adding the Triplet Loss led to 

an improvement for both datasets. 

 

μ Accuracy Precision Recall F1 Score 

200 0.66 ± 0.01 0.71 ± 0.01 0.66 ± 0.01 0.65 ± 0.01 

100 0.71 ± 0.01 0.75 ± 0.01 0.71 ± 0.01 0.71 ± 0.02 

50 0.75 ± 0.01 0.78 ± 0.01 0.75 ± 0.01 0.75 ± 0.01 

10 0.84 ± 0.00 0.84 ± 0.01 0.84 ± 0.01 0.84 ± 0.01 

    
    

    
        

    

    
    

    

    

    

    

    

    

                               

                                              
                                             

               

Figure 2. Accuracy, Precision, Recall, and 

F1 Score for TriCDB-CE and CDB-CE on 

CIFAR-100-LT (μ = 100) 
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Table 3. Accuracies on CIFAR-10-LT and CIFAR-100-LT (μ = 100) 

Method CIFAR-10-LT CIFAR-100-LT 

Focal Loss [11]† 0.52 0.38 

Class Frequency-Based Sampling [20]† 0.57 0.39 

Class-Balanced Loss [10]† 0.58 0.40 

LDAM-DRW [21]† 0.59 0.42 

CDB-CE Loss [2] 0.65 0.40 

TriCDB-CE Loss (Ours) 0.72 0.42 

†Results were reported from [2] 

 

In Table 4, we show the results for Places-LT. This table shows accuracy for: many-shot classes, medium-

shot classes, few-shot classes, and the entire test set. They compared their results with those of an ImageNet-

pretrained ResNet-152 model, Focal Loss [11], Range Loss [3], and FSLwF [22]. The ResNet-152 model was 

the best-performing method for the many-shot classes with an accuracy of 0.459. OLTR [6] topped the 

medium-shot metric with 0.370. The outperforming method for the few-shot classes is FSLwF [22], with 

accuracy close to 30%. Overall, OLTR [6] had the best accuracy of 0.359. Tri-CDB-CE Loss exhibited poor 

performance in all metrics. We suspect the smaller batch size affected performance. 

 

Table 4. Accuracies on Places-LT 

Method Many-Shot Medium-Shot Few-shot All 

Plain Model [18]† 0.459 0.224 0.004 0.272 

Focal Loss [11]† 0.411 0.348 0.224 0.346 

Range Loss [3]† 0.411 0.354 0.232 0.351 

FSLwF [22]† 0.439 0.299 0.295 0.349 

OLTR [6]† 0.447 0.370 0.253 0.359 

CDB-CE [2] 0.395 0.195 0.026 0.234 

TriCDB-CE Loss (Ours) 0.390 0.192 0.028 0.231 

†Reported from [6] 

 

6. CONCLUSION 

We introduced a new loss function suitable for handling long tail datasets. This loss function combines Triplet 

Loss and Class-Wise Difficulty-Based Cross-Entropy Loss. The Triplet Loss is responsible for the model to 

learn features to enable good representation learning. The CDB-CE Loss focuses on getting the classification 

right by assigning weights to the classes based on the perceived difficulty of the class—the more difficult a 

class is the greater its weight. We performed experiments on CIFAR-10-LT, CIFAR-100-LT, and Places-LT. 

The results showed that TriCDB-CE outperformed on CIFAR datasets but did not do well on Places-LT. We 

expect better performance to be possible with further enhancement on the Triplet Loss. 
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