DOI QR코드

DOI QR Code

Geometry impact on the stability behavior of cylindrical microstructures: Computer modeling and application for small-scale sport structures

  • Yunzhong Dai (Intelligent Manufacturing Institute, Yibin Vocational and Technical College) ;
  • Zhiyong Jiang (Engineering Comprehensive Training Center, Guilin University of Aerospace Technology) ;
  • Kuan-yu Chen (Yulin Normal University, School of Political Science and Law) ;
  • Duquan Zuo (Yulin Normal University, School of Political Science and Law) ;
  • Mostafa habibi (Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois) ;
  • H. Elhosiny Ali (Department of Physics, Faculty of Science, King Khalid University) ;
  • Ibrahim Albaijan (Mechanical Engineering Department, College of Engineering at Al Kharj, Prince Sattam Bin Abdulaziz University)
  • Received : 2023.03.05
  • Accepted : 2023.05.22
  • Published : 2023.08.25

Abstract

This paper investigates the stability of a bi-directional functionally graded (BD-FG) cylindrical beam made of imperfect concrete, taking into account size-dependency and the effect of geometry on its stability behavior. Both buckling and dynamic behavior are analyzed using the modified coupled stress theory and the classical beam theory. The BD-FG structure is created by using porosity-dependent FG concrete, with changing porosity voids and material distributions along the pipe radius, as well as uniform and nonuniform radius functions that vary along the beam length. Energy principles are used to generate partial differential equations (PDE) for stability analysis, which are then solved numerically. This study sheds light on the complex behavior of BD-FG structures, and the results can be useful for the design of stable cylindrical microstructures.

Keywords

Acknowledgement

This work was supported by the High-tech Key Laboratory of Agricultural Equipment and Intelligence of Jiangsu Province (MAET202104), University-level scientific research projects of Yibin Vocational and Technical College (ZRKY21ZDXM-02, ybzysc20bk01, ybzy20cxtd02), Grant SCITLAB (SCITLAB-1013) of Intelligent Terminal Key Laboratory of Sichuan Province; Sichuan Province postdoctoral research project special support (Topology and leakage current suppression of Z-Source photovoltaic grid-connected inverter with coupled inductor coil).

References

  1. Abo-Bakr, H.M., Abo-Bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2023), "Weight optimization of axially functionally graded microbeams under buckling and vibration behaviors", Mech. Based Des. Struct. Machines. 51(1), 213-234. https://doi.org/10.1080/15397734.2020.1838298. 
  2. Ahmed, Z.Y., Bos, F.P., van Brunschot, M.C.A.J. and Salet, T.A.M. (2020), "On-demand additive manufacturing of functionally graded concrete", Virt. Phys. Prototyping. 15(2), 194-210. https://doi.org/10.1080/17452759.2019.1709009. 
  3. Alimoradzadeh, M. and Akbas, S.D. (2022), "Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment", Struct. Eng. Mech., 81(6), 705-714. https://doi.org/10.12989/SEM.2022.81.6.705. 
  4. Atmane Hassen, A., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-384. https://doi.org/10.12989/SCS.2015.19.2.369. 
  5. Attia, A., Tounsi, A., Bedia, E.A.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. https://doi.org/10.12989/SCS.2015.18.1.187. 
  6. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/SCS.2019.30.6.603. 
  7. Bamdad, M., Mohammadimehr, M. and Alambeigi, K. (2020), "Bending and buckling analysis of sandwich Reddy beam considering shape memory alloy wires and porosity resting on Vlasov's foundation", Steel Compos. Struct., 36(6), 671-687. https://doi.org/10.12989/SCS.2020.36.6.671. 
  8. Bellifa, H., Bakora, A., Tounsi, A., Bousahla Abdelmoumen, A. and Mahmoud, S.R. (2017), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., 25(3), 257-270. https://doi.org/10.12989/SCS.2017.25.3.257. 
  9. Bennai, R., Atmane Hassen, A. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/SCS.2015.19.3.521. 
  10. Bochkareva Sergey, A. and Lekomtsev Sergey, V. (2022), "Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells", Struct. Eng. Mech., 81(6), 769-780. https://doi.org/10.12989/SEM.2022.81.6.769. 
  11. Boettinger, W.J., Coriell, S.R., Greer, A.L., Karma, A., Kurz, W., Rappaz, M. and Trivedi, R. (2000), "Solidification microstructures: recent developments, future directions", Acta Materialia. 48(1), 43-70. https://doi.org/10.1016/S1359-6454(99)00287-6. 
  12. Boggarapu, V., Gujjala, R., Ojha, S., Acharya, S., Venkateswara babu, P., Chowdary, S. and kumar Gara, D. (2021), "State of the art in functionally graded materials", Compos. Struct., 262. 113596. https://doi.org/10.1016/j.compstruct.2021.113596. 
  13. Chaht Fouzia, L., Kaci, A., Houari Mohammed Sid, A., Tounsi, A., Beg, O.A. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/SCS.2015.18.2.425. 
  14. Chen, T., Crosbie Robert, C., Anandkumarb, A., Melville, C. and Chan, J. (2021), "Optimized AI controller for reinforced concrete frame structures under earthquake excitation", Adv. Concrete Construct.. 11(1), 1-9. https://doi.org/10.12989/ACC.2021.11.1.001. 
  15. Du, M., Liu, J., Ye, W., Yang, F. and Lin, G. (2022), "A new semi-analytical approach for bending, buckling and free vibration analyses of power law functionally graded beams", Struct. Eng. Mech., 81(2), 179-194. https://doi.org/10.12989/SEM.2022.81.2.179. 
  16. Ebrahimi, F., Shafiei, N., Kazemi, M. and Mousavi Abdollahi, S.M. (2017), "Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(15), 1257-1273. https://doi.org/10.1080/15376494.2016.1227499. 
  17. Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Advances Nano Res., 5(2), 141. https://doi.org/10.12989/anr.2017.5.2.141. 
  18. Esparham, A., Moradikhou Amir, B., Andalib Faeze, K. and Avanaki Mohammad, J. (2021), "Strength characteristics of granulated ground blast furnace slag-based geopolymer concrete", Advances Concrete Construct., 11(3), 219-229. https://doi.org/10.12989/ACC.2021.11.3.219. 
  19. Feng, Q., Feng, Z. and Su, X. (2021), "Design and Simulation of Human Resource Allocation Model Based on Double-Cycle Neural Network", Comput. Intell. Neurosci., 2021, 7149631. https://doi.org/10.1155/2021/7149631. 
  20. Feng, Y., Zhang, B., Liu, Y., Niu, Z., Fan, Y. and Chen, X. (2022), "A D-Band Manifold Triplexer With High Isolation Utilizing Novel Waveguide Dual-Mode Filters", IEEE Transact. Terahertz Sci. Technol., 12(6), 678-681. https://doi.org/10.1109/TTHZ.2022.3203308. 
  21. Fu, Q., Gu, M., Yuan, J. and Lin, Y. (2022), Experimental Study on Vibration Velocity of Piled Raft Supported Embankment and Foundation for Ballastless High Speed Railway, Buildingshttps://doi.org/10.3390/buildings12111982. 
  22. Gao, H., Li, X., Nezhad Abdolreza, H. and Behshad, A. (2022), "Numerical simulation of the flow in pipes with numerical models", Struct. Eng. Mech., 81(4), 523-527. https://doi.org/10.12989/SEM.2022.81.4.523. 
  23. Ghadiri, M., Hosseini, S.H.S. and Shafiei, N. (2016a), "A power series for vibration of a rotating nanobeam with considering thermal effect", Mech. Adv. Mater. Struct., 23(12), 1414-1420. https://doi.org/10.1080/15376494.2015.1091527. 
  24. Ghadiri, M., Shafiei, N. and Alavi, H. (2017a), "Thermo-mechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(8), 636-646. https://doi.org/10.1080/15376494.2016.1196770. 
  25. Ghadiri, M., Shafiei, N. and Alireza Mousavi, S. (2016b), "Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM", Appl. Phys. A. 122(9), 837. https://doi.org/10.1007/s00339-016-0364-5. 
  26. Ghadiri, M., Shafiei, N. and Babaei, R. (2017b), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel Compos. Struct., 25(2), 197-207. https://doi.org/10.12989/scs.2017.25.2.197. 
  27. Ghadiri, M., Shafiei, N. and Hossein Alavi, S. (2017c), "Vibration analysis of a rotating nanoplate using nonlocal elasticity theory", J. Solid Mech., 9(2), 319-337. https://jsm.arak.iau.ir/article_531824_c4e4e72f55b3a3a2cde7fda2f9b20ed3.pdf. 
  28. Ghadiri, M., Shafiei, N., Salekdeh, S.H., Mottaghi, P. and Mirzaie, T. (2016c), "Investigation of the dental implant geometry effect on stress distribution at dental implant-bone interface", J. Brazil. Soc. Mech. Sci. Eng., 38(2), 335-343. https://doi.org/10.1007/s40430-015-0472-8. 
  29. Guo, X., Liu, Y. and Wang, G. (2021), "Computer modeling for frequency performance of viscoelastic magneto-electro-elastic annular micro/nanosystem via adaptive tuned deep learning neural network optimization", Adv. Nano Res., 11(2), 203-218. https://doi.org/10.12989/anr.2021.11.2.203. 
  30. Habibi, M., Darabi, R., Sa, J.C.D. and Reis, A. (2021), "An innovation in finite element simulation via crystal plasticity assessment of grain morphology effect on sheet metal formability", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 235(8), 1937-1951. https://doi.org/10.1177/14644207211024686. 
  31. He, X., Ding, J., Habibi, M., Safarpour, H. and Safarpour, M. (2021), "Non-polynomial framework for bending responses of the multi-scale hybrid laminated nanocomposite reinforced circular/annular plate", Thin-Wall. Struct., 166, 108019. https://doi.org/10.1016/j.tws.2021.108019. 
  32. He, Y. and Cai, Y. (2021), "Influence of cross-section on the linear and nonlinear buckling analysis of imperfect functionally graded micro-tubes", Mech. Based Des. Struct. Machines. 1-22. https://doi.org/10.1080/15397734.2021.1956330. 
  33. Herrmann, M. and Sobek, W. (2017), "Functionally graded concrete: Numerical design methods and experimental tests of mass-optimized structural components", Struct. Concrete. 18(1), 54-66. https://doi.org/10.1002/suco.201600011. 
  34. Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2021), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-021-01456-x. 
  35. Houari Mohammed Sid, A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257-276. https://doi.org/10.12989/SCS.2016.22.2.257. 
  36. Huang, H., Yao, Y., Liang, C. and Ye, Y. (2022), "Experimental study on cyclic performance of steel-hollow core partially encased composite spliced frame beam", Soil Dyn. Earthq. Eng., 163, 107499. https://doi.org/10.1016/j.soildyn.2022.107499. 
  37. Huang, X., Hao, H., Oslub, K., Habibi, M. and Tounsi, A. (2021a), "Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01399-3. 
  38. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021b), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform micro-tube", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-021-01395-7. 
  39. Iqbal, J., Dai, F., Hong, M., Tu, X. and Xie, Q. (2018), "Failure Mechanism and Stability Analysis of an Active Landslide in the Xiangjiaba Reservoir Area, Southwest China", J. Earth Sci., 29(3), 646-661. https://doi.org/10.1007/s12583-017-0753-5. 
  40. Jia, A., Liu, H., Ren, L., Yun, Y. and Tahouneh, V. (2020), "Influence of porosity distribution on vibration analysis of GPLs-reinforcement sectorial plate", Steel Compos. Struct., 35(1), 111-127. https://doi.org/10.12989/SCS.2020.35.1.111. 
  41. Jiang, S., Zhao, C., Zhu, Y., Wang, C. and Du, Y. (2022), "A practical and economical ultra-wideband base station placement approach for indoor autonomous driving systems", J. Adv. Transport., 2022, 3815306. https://doi.org/10.1155/2022/3815306. 
  42. Kar Vishesh, R. and Panda Subrata, K. (2015), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. https://doi.org/10.12989/SCS.2015.18.3.693. 
  43. Kieback, B., Neubrand, A. and Riedel, H. (2003), "Processing techniques for functionally graded materials", Mater. Sci. Eng.: A. 362(1), 81-106. https://doi.org/10.1016/S0921-5093(03)00578-1. 
  44. Li, T., Xia, T., Wang, H., Tu, Z., Tarkoma, S., Han, Z. and Hui, P. (2022a), "Smartphone app usage analysis: datasets, methods, and applications", IEEE Communicat. Surveys Tutorials. 24(2), 937-966. https://doi.org/10.1109/COMST.2022.3163176. 
  45. Li, X., Li, L., Hu, Y., Ding, Z. and Deng, W. (2017), "Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory", Compos. Struct., 165, 250-265. https://doi.org/10.1016/j.compstruct.2017.01.032. 
  46. Li, X., Younas, M., Rezakazemi, M., Ly, Q.V. and Li, J. (2022b), "A review on hollow fiber membrane module towards high separation efficiency: Process modeling in fouling perspective", Chinese Chemical Lett., 33(8), 3594-3602. https://doi.org/10.1016/j.cclet.2021.10.044. 
  47. Li, Z., He, Y., Lei, J., Guo, S., Liu, D. and Wang, L. (2018), "A standard experimental method for determining the material length scale based on modified couple stress theory", Int. J. Mech. Sci., 141, 198-205. https://doi.org/10.1016/j.ijmecsci.2018.03.035. 
  48. Lin, Y., Song, H., Ke, F., Yan, W., Liu, Z. and Cai, F. (2022), "Optimal caching scheme in D2D networks with multiple robot helpers", Comput. Commun., 181, 132-142. https://doi.org/10.1016/j.comcom.2021.09.027. 
  49. Liu, C., Cui, J., Zhang, Z., Liu, H., Huang, X. and Zhang, C. (2021a), "The role of TBM asymmetric tail-grouting on surface settlement in coarse-grained soils of urban area: Field tests and FEA modelling", Tunnell. Underg. Space Technol., 111, 103857. https://doi.org/10.1016/j.tust.2021.103857. 
  50. Liu, H., Zhao, Y., Pishbin, M., Habibi, M., Bashir, M. and Issakhov, A. (2021b), "A comprehensive mathematical simulation of the composite size-dependent rotary 3D microsystem via two-dimensional generalized differential quadrature method", Eng. Comput., 1-16. https://doi.org/10.1007/s00366-021-01419-2. 
  51. Liu, Z., Wu, X., Yu, M. and Habibi, M. (2020), "Large-amplitude dynamical behavior of multilayer graphene platelets reinforced nanocomposite annular plate under thermo-mechanical loadings", Mech. Based Des. Struct. Machines. 1-25. https://doi.org/10.1080/15397734.2020.1815544. 
  52. Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41(3), 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X. 
  53. Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solids. 56(12), 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007. 
  54. Mahamood, R.M., Akinlabi, E.T., Shukla, M. and Pityana, S.L. (2012), "Functionally graded material: An overview", 2012-07. http://hdl.handle.net/10204/6548. 
  55. Maheswaran, J., Chellapandian, M. and Kumar, V. (2022), "Behavior of GGBS concrete with pond ash as a partial replacement for sand", Adv. Concrete Construct., 13(3), 233-242. https://doi.org/10.12989/ACC.2022.13.3.233. 
  56. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla Abdelmoumen, A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/SCS.2019.32.5.595. 
  57. Mirjavadi Seyed, S., Forsat, M., Barati Mohammad, R. and Hamouda, A.M.S. (2020), "Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection", Steel Compos. Struct., 35(4), 567-578. https://doi.org/10.12989/SCS.2020.35.4.567. 
  58. Mousavi, S.M., Shafiei, N. and Dadvand, A. (2017), "Numerical simulation of subsonic turbulent flow over NACA0012 airfoil: evaluation of turbulence models", Sigma J. Eng. Nat. Sci., 35(1), 133-155. https://dergipark.org.tr/en/pub/sigma/issue/65585/1016455.  1016455
  59. Naebe, M. and Shirvanimoghaddam, K. (2016), "Functionally graded materials: A review of fabrication and properties", Appl. Mater. Today. 5, 223-245. https://doi.org/10.1016/j.apmt.2016.10.001. 
  60. Omidi, S., Oskooee, M.B. and Shafiei, N. (2013), "Finite element analysis of an ultra-fine grained Titanium dental implant covered by different thicknesses of hydroxyapatite layer", Indian J. Dentistry. 4(1), 1-4. https://doi.org/10.1016/j.ijd.2012.10.002. 
  61. Polukhov, E., Vallicotti, D. and Keip, M.A. (2018), "Computational stability analysis of periodic electroactive polymer composites across scales", Comput. Meth. Appl. Mech. Eng., 337, 165-197. https://doi.org/10.1016/j.cma.2018.01.020. 
  62. Raj, A., Sathyan, D. and Mini, K.M. (2021), "Performance evaluation of natural fiber reinforced high volume fly ash foam concrete cladding", Adv. Concrete Construct., 11(2), 151-161. https://doi.org/10.12989/ACC.2021.11.2.151. 
  63. Rajasekaran, S. and Khaniki, H.B. (2018), "Bending, buckling and vibration analysis of functionally graded non-uniform nanobeams via finite element method", J. Brazil. Soc. Mech. Sci. Eng., 40(11), 549. https://doi.org/10.1007/s40430-018-1460-6. 
  64. Ramteke Prashik, M., Panda Subrata, K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., 33(6), 865-875. https://doi.org/10.12989/SCS.2019.33.6.865. 
  65. Reddy, J.N. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solids. 59(11), 2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008. 
  66. Sahmani, S. and Safaei, B. (2021), "Microstructural-dependent nonlinear stability analysis of random checkerboard reinforced composite micropanels via moving Kriging meshfree approach", Europ. Phys. J. Plus. 136(8), 806. https://doi.org/10.1140/epjp/s13360-021-01706-3. 
  67. Shafiei, N., Ghadiri, M., Makvandi, H. and Hosseini, S.A. (2017), "Vibration analysis of Nano-Rotor's Blade applying Eringen nonlocal elasticity and generalized differential quadrature method", Appl. Mathem. Modelling. 43, 191-206. https://doi.org/10.1016/j.apm.2016.10.061. 
  68. Shafiei, N., Hamisi, M. and Ghadiri, M. (2020a), "Vibration Analysis of Rotary Tapered Axially Functionally Graded Timoshenko Nanobeam in Thermal Environment", J. Solid Mech., 12(1), 16-32. https://doi.org/10.22034/jsm.2019.563759.1273. 
  69. Shafiei, N. and Kazemi, M. (2017), "Nonlinear buckling of functionally graded nano-/micro-scaled porous beams", Compos. Struct., 178, 483-492. https://doi.org/10.1016/j.compstruct.2017.07.045. 
  70. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016), "Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen's nonlocal elasticity and DQM", Appl. Phys. A. 122(8), 728. https://doi.org/10.1007/s00339-016-0245-y. 
  71. Shafiei, N. and She, G.-L. (2018), "On vibration of functionally graded nano-tubes in the thermal environment", Int. J. Eng. Sci., 133, 84-98. https://doi.org/10.1016/j.ijengsci.2018.08.004. 
  72. Shafiei, Z., Sarrami-Foroushani, S., Azhari, F. and Azhari, M. (2020b), "Application of modified couple-stress theory to stability and free vibration analysis of single and multi-layered graphene sheets", Aeros. Sci. Technol., 98 105652. https://doi.org/10.1016/j.ast.2019.105652. 
  73. Shahabinejad, E., Shafiei, N. and Ghadiri, M. (2018), "Influence of temperature change on modal analysis of rotary functionally graded nano-beam in thermal environment", J. Solid Mech., 10(4), 779-803. https://jsm.arak.iau.ir/article_545719.html. 
  74. Shahram Ghaedi Faramoushjan Hossein Jalalifar, R.K. (2021), "Mathematical modelling and numerical study for buckling study in concrete beams containing carbon nanotubes", Advances Concrete Construct., 11(6), 521-529. https://doi.org/10.12989/ACC.2021.11.6.521. 
  75. Shanab, R.A. and Attia, M.A. (2023), "On bending, buckling and free vibration analysis of 2D-FG tapered Timoshenko nanobeams based on modified couple stress and surface energy theories", Waves Random Complex Media. 33(3), 590-636. https://doi.org/10.1080/17455030.2021.1884770. 
  76. Shariq, M., Pal, S., Chaubey, R. and Masood, A. (2022), "An experimental and analytical study into the strength of hooked-end steel fiber reinforced HVFA concrete", Adv. Concrete Construct., 13(1), 35-43. https://doi.org/10.12989/ACC.2022.13.1.035. 
  77. Shivanian, E., Ghadiri, M. and Shafiei, N. (2017), "Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation", Appl. Phys. A. 123(5), 329. https://doi.org/10.1007/s00339-017-0955-9. 
  78. SoltanRezaee, M., Bodaghi, M., Farrokhabadi, A. and Hedayati, R. (2019), "Nonlinear stability analysis of piecewise actuated piezoelectric microstructures", Int. J. Mech. Sci., 160, 200-208. https://doi.org/10.1016/j.ijmecsci.2019.06.030. 
  79. Tahmasebinia, F., Yip, C.S., Lok, C.F., Sun, Y., Wu, J., Sepasgozar, S.M.E. and Marroquin, F.A. (2022), Dynamic Behavior of the Composite Steel-Concrete Beam Floor Systems under Free and Forced Vibration, https://doi.org/10.3390/buildings12030320. 
  80. Tian, L.-m., Li, M.-h., Li, L., Li, D.-y. and Bai, C. (2023), "Novel joint for improving the collapse resistance of steel frame structures in column-loss scenarios", Thin-Wall. Struct., 182, 110219. https://doi.org/10.1016/j.tws.2022.110219. 
  81. Ting Cai Yousef Zandi, A.S.A.A.S.A.I.A.R.-V. (2021), "The compressive strength of concrete retrofitted with wind ash and steel slag pozzolans with a water-cement based polymers", Adv. Concrete Construct., 11(6), 507-519. https://doi.org/10.12989/ACC.2021.11.6.507. 
  82. Torelli, G., Fernandez, M.G. and Lees, J.M. (2020), "Functionally graded concrete: Design objectives, production techniques and analysis methods for layered and continuously graded elements", Construct. Build. Mater., 242, 118040. https://doi.org/10.1016/j.conbuildmat.2020.118040. 
  83. Wang, H., Zandi, Y., Gholizadeh, M. and Issakhov, A. (2021), "Buckling of porosity-dependent bi-directional FG nanotube using numerical method", Adv. Nano Res., 10(5), 493-507. https://doi.org/10.12989/anr.2021.10.5.493. 
  84. Wang, P., Gao, Z., Pan, F., Moradi, Z., Mahmoudi, T. and Khadimallah, M.A. (2022), "A couple of GDQM and iteration techniques for the linear and nonlinear buckling of bi-directional functionally graded nanotubes based on the nonlocal strain gradient theory and high-order beam theory", Eng. Anal. Bound. Elements. 143, 124-136. https://doi.org/10.1016/j.enganabound.2022.06.007. 
  85. Wei, J., Xie, Z., Zhang, W., Luo, X., Yang, Y. and Chen, B. (2021), "Experimental study on circular steel tube-confined reinforced UHPC columns under axial loading", Eng. Struct., 230, 111599. https://doi.org/10.1016/j.engstruct.2020.111599. 
  86. Xiao, X., Zhang, H., Li, Z. and Chen, F. (2022), "Effect of temperature on the fatigue life assessment of suspension bridge steel deck welds under dynamic vehicle loading", Mathem. Prob. Eng., https://doi.org/10.1155/2022/7034588. 
  87. Xiao, X., Zhang, Q., Zheng, J. and Li, Z. (2023), "Analytical model for the nonlinear buckling responses of the confined polyhedral FGP-GPLs lining subjected to crown point loading", Eng. Struct., 282, 115780. https://doi.org/10.1016/j.engstruct.2023.115780. 
  88. Xu, K.D., Guo, Y.J., Liu, Y., Deng, X., Chen, Q. and Ma, Z. (2021a), "60-GHz Compact Dual-Mode On-Chip Bandpass Filter Using GaAs Technology", IEEE Electron Device Lett., 42(8), 1120-1123. https://doi.org/10.1109/LED.2021.3091277. 
  89. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021b), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 114395. https://doi.org/10.1016/j.compstruct.2021.114395. 
  90. Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X. 
  91. Yang, J., Fu, L.-Y., Zhang, Y. and Han, T. (2022a), "Temperature- and pressure-dependent pore microstructures using static and dynamic moduli and their correlation", Rock Mech. Rock Eng., 55(7), 4073-4092. https://doi.org/10.1007/s00603-022-02829-4. 
  92. Yang, J. and Shen, H.-S. (2002), "Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments", J. Sound Vib., 255(3), 579-602. https://doi.org/10.1006/jsvi.2001.4161. 
  93. Yang, Y., Lin, B. and Zhang, W. (2023), "Experimental and numerical investigation of an arch-beam joint for an arch bridge", Archiv. Civil Mech. Eng., 23(2), 101. https://doi.org/10.1007/s43452-023-00645-3. 
  94. Yang, Z., Xu, J., Feng, Q., Liu, W., He, P. and Fu, S. (2022b), "Elastoplastic analytical solution for the stress and deformation of the surrounding rock in cold region tunnels considering the influence of the temperature field", Int. J. Geomech., 22(8), 04022118. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002466. 
  95. Yao, Y., Huang, H., Zhang, W., Ye, Y., Xin, L. and Liu, Y. (2022), "Seismic performance of steel-PEC spliced frame beam", J. Construct. Steel Res., 197, 107456. https://doi.org/10.1016/j.jcsr.2022.107456. 
  96. Yazhini, E. and Chithra, R. (2022), "Performance study of fibre reinforced functionally graded concrete pipes", Construct. Build. Mater., 344, 128224. https://doi.org/10.1016/j.conbuildmat.2022.128224. 
  97. Zarga, D., Tounsi, A., Bousahla Abdelmoumen, A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/SCS.2019.32.3.389. 
  98. Zhang, C. and Wang, H. (2020), "Swing vibration control of suspended structures using the active rotary inertia driver system: Theoretical modeling and experimental verification", Struct. Control Health Monit., 27(6), e2543. https://doi.org/10.1002/stc.2543. 
  99. Zhang, X., Wang, Y., Yang, M. and Geng, G. (2021a), "Toward concurrent video multicast orchestration for caching-assisted mobile networks", IEEE Transact. Vehicular Technology. 70(12), 13205-13220. https://doi.org/10.1109/TVT.2021.3119429. 
  100. Zhang, Y., Wang, Z., Tazeddinova, D., Ebrahimi, F., Habibi, M. and Safarpour, H. (2021b), "Enhancing active vibration control performances in a smart rotary sandwich thick nanostructure conveying viscous fluid flow by a PD controller", Waves Random Complex Media. 1-24. https://doi.org/10.1080/17455030.2021.1948627. 
  101. Zhao, J. and Yu, Z. (2021), "On the modeling and simulation of the nonlinear dynamic response of NEMS via a couple of nonlocal strain gradient theory and classical beam theory", Adv. Nano Res., 11(5), 547-563. https://doi.org/10.12989/anr.2021.11.5.547. 
  102. Zhong, Q., Chen, Y., Zhu, B., Liao, S. and Shi, K. (2022), "A temperature field reconstruction method based on acoustic thermometry", Measurement. 200 111642. https://doi.org/10.1016/j.measurement.2022.111642. 
  103. Zhong, Y. and Liang, X. (2022), "Using CNN-VGG 16 to detect the tennis motion tracking by information entropy and unascertained measurement theory", Adv. Nano Res., 12(2), 223. https://doi.org/10.12989/anr.2022.12.2.223. 
  104. Zhou, C., Zhang, Z., Zhang, J., Fang, Y. and Tahouneh, V. (2020), "Vibration analysis of FG porous rectangular plates reinforced by graphene platelets", Steel Compos. Struct., 34(2), 215-226. https://doi.org/10.12989/SCS.2020.34.2.215.