DOI QR코드

DOI QR Code

Dynamic analysis of a rotating tapered composite Timoshenko shaft

  • Zahi Rachid (Laboratory of Mechanics of Structures and Solids LMSS, University of Sidi Bel Abbes) ;
  • Sahli Abderahmane (Department of Mechanical Engineering, Laboratory Mechanics Physics of Materials (LMPM), University of Sidi Bel Abbes) ;
  • Moulgada Abdelmadjid (Department of Mechanical Engineering, Laboratory Mechanics Physics of Materials (LMPM), University of Sidi Bel Abbes) ;
  • Ziane Noureddine (UDL de Sidi Bel Abbes. Laboratoire des Structures et Materiaux Avances) ;
  • Refassi Kaddour (Laboratory of Mechanics of Structures and Solids LMSS, University of Sidi Bel Abbes)
  • Received : 2022.10.29
  • Accepted : 2023.05.05
  • Published : 2023.08.25

Abstract

This research presents an advanced finite element formulation for analyzing the vibratory behaviour of tapered composite shaft rotors, taking into account the impact of the draft angle on the stiffness of the composite shaft laminate. The vibration response of the shaft rotating around its axis is studied using both the finite element hierarchical method and the classical finite element formulation, based on the theory of transverse shear deformation, rotary inertia, gyroscopic effect, and coupling effect due to the stratification of the composite layers of the shaft. The study also includes the development of a program to calculate the Eigen frequencies and critical speeds of the system, and the obtained results are compared with those available in the literature. This research provides valuable insights into the vibratory behaviour of tapered composite shaft rotors and can be useful for designing and optimizing such structures in various industrial applications.

Keywords

References

  1. Reddy, J.N. (1997), Mechanics of Laminated Composite Plates-Theory and Analysis, Boca Raton, FL: CRC Press.
  2. Huang, W. and Tahouneh, V. (2021), "Frequency study of porous FGPM beam on two-parameter elastic foundations via Timoshenko theory", Steel Compos. Struct., 40(1), 139-156. https://doi.org/10.12989/scs.2021.40.1.139.
  3. Whitney, J.M. (2018), Structural Analysis of Laminated Anisotropic Plates. Routledge.
  4. Zeren, S. and Gurgoze, M. (2013), "On the dynamics of rotating, tapered, visco-elastic beams with a heavy tip mass", Struct. Eng. Mech., 45(1), 69-93. https://doi.org/10.12989/sem.2013.45.1.069.
  5. Berthelot, J.M. and Ling, F.F. (1999), "Composite materials: mechanical behavior and structural analysis", 435. Springer. https://doi.org/10.1007/978-1-4612-0527-2.
  6. Mao, Q. (2015), "AMDM for free vibration analysis of rotating tapered beams", Struct. Eng. Mech., 54(3), 419-432. https://doi.org/10.12989/sem.2015.54.3.419.
  7. Krishnaswamy, S., Chandrashekhara, K. and Wu, W.Z.B. (1992), "Analytical solutions to vibration of generally layered composite beams", J. Sound Vib., 159(1), 85-99. https://doi.org/10.1016/0022-460X(92)90452-4
  8. Simsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059.
  9. Noor, A.K. (1973), "Free vibrations of multilayered composite plates", AIAA J., 11(7), 1038-1039. https://doi.org/10.2514/3.6868
  10. Miller, A.K. and Adams, D.F. (1975), "An analytic means of determining the flexural and torsional resonant frequencies of generally orthotropic beams", J. Sound Vib., 41(4), 433-449. https://doi.org/10.1016/S0022-460X(75)80107-6
  11. Shokouhifard, V., Mohebpour, S., Malekzadeh, P. and Alighanbari, H. (2020), "An inclined FGM beam under a moving mass considering Coriolis and centrifugal accelerations", Steel Compos. Struct., 35(1), 61-76. https://doi.org/10.12989/scs.2020.35.1.061.
  12. Mohammadimehr, M. and Shahedi, S. (2016), "Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich Timoshenko microbeams based on MSGT using GDQM", Steel Compos. Struct., 21(1), 1-36. https://doi.org/10.12989/scs.2016.21.1.001.
  13. Chen, A.T. and Yang, T.Y. (1985), "Static and dynamic formulation of a symmetrically laminated beam finite element for a microcomputer", J. Compos. Mater., 19(5), 459-475. https://doi.org/10.1177/002199838501900505
  14. Chandrashekhara, K., Krishnamurthy, K. and Roy, S. (1990), "Free vibration of composite beams including rotary inertia and shear deformation", Compos. Struct., 14(4), 269-279. https://doi.org/10.1016/0263-8223(90)90010-C
  15. Moghtaderi, S.H., Faghidian, S.A. and Shodja, H.M. (2018), "Analytical determination of shear correction factor for Timoshenko beam model", Steel Compos. Struct., 29(4), 483-491. https://doi.org/10.12989/scs.2018.29.4.483.
  16. Shi, G., Lam, K.Y. and Tay, T.E. (1998), "On efficient finite element modeling of composite beams and plates using higher-order theories and an accurate composite beam element", Compos. Struct., 41(2), 159-165. https://doi.org/10.1016/S0263-8223(98)00050-6.
  17. Ramtekkar, G.S., Desai, Y.M. and Shah, A.H. (2002), "Natural vibrations of laminated composite beams by using mixed finite element modelling", J. Sound Vib., 257(4), 635-651. https://doi.org/10.1006/jsvi.2002.5072.
  18. Mackerle, J. (1997), "Finite element linear and nonlinear, static and dynamic analysis of structural elements: A bibliography (1992-1995)", Eng. Comput., 14(4), 347-440. https://doi.org/10.1108/02644409710178494
  19. Han, W. and Petyt, M. (1996), "Linear vibration analysis of laminated rectangular plates using the hierarchical finite element method-I. Free vibration analysis", Comput. Struct., 61(4), 705-712. https://doi.org/10.1016/0045-7949(95)00379-7.
  20. Rahmani, O., Hosseini, S.A.H., Ghoytasi, I. and Golmohammadi, H. (2018), "Free vibration of deep curved FG nano-beam based on modified couple stress theory", Steel Compos. Struct., 26(5), 607-620. https://doi.org/10.12989/scs.2018.26.5.607.
  21. West, L.J., Bardell, N.S., Dunsdon, J.M. and Loasby, P.M. (1997), "Some limitations associated with the use of K-orthogonal polynomials in hierarchical versions of the finite element method", Structural Dynamics: Recent Advances, Southampton, 14-17 July 1997, 217-231.
  22. Houmat, A. (1997), "An alternative hierarchical finite element formulation applied to plate vibrations", J. Sound Vib., 206(2), 201-215. https://doi.org/10.1006/jsvi.1997.1076.
  23. Bert, C.W. and Kim, C.D. (1993), "Whirling of composite-material driveshafts including bending-twisting coupling and transverse shear deformation", In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 6395, 47-53. American Society of Mechanical Engineers.
  24. Akbas, S.D. (2018), "Post-buckling responses of a laminated composite beam", Steel Compos. Struct., 26(6), 733-743. https://doi.org/10.12989/scs.2018.26.6.733.
  25. Kim, C.D. and Bert, C.W. (1993), "Critical speed analysis of laminated composite, hollow drive shafts", Compos. Eng., 3(7-8), 633-643. https://doi.org/10.1016/0961-9526(93)90087-Z
  26. Ebrahimi, F. and Dashti, S. (2015), "Free vibration analysis of a rotating non-uniform functionally graded beam", Steel Compos. Struct., 19(5), 1279-1298. https://doi.org/10.12989/scs.2015.19.5.1279.
  27. Guler, S. (2021), "Free vibration analysis of a rotating single edge cracked axially functionally graded beam for flap-wise and chord-wise modes", Eng. Struct., 242, 112564. https://doi.org/10.1016/j.engstruct.2021.112564.
  28. Mazanoglu, K. and Guler, S. (2017), "Flap-wise and chord-wise vibrations of axially functionally graded tapered beams rotating around a hub", Mech. Syst. Sig. Processing, 89, 97-107. https://doi.org/10.1016/j.ymssp.2016.07.017.
  29. Kara, M., Guler, S. and Secgin, A. (2021), "Sensitivity analysis of laminated composite plates with different orientations in low to high order modes", Smart Mater. Struct, 30(8), 085034. https://doi.org/10.1088/1361-665X/ac0f46.
  30. Mohammadnejad, M. and Saffari, H. (2019), "Flapwise and non-local bending vibration of the rotating beams", Struct. Eng. Mech., 72(2), 229-244. https://doi.org/10.12989/sem.2019.72.2.229.
  31. Almitani, K.H., Eltaher, M.A., Abdelrahman, A.A. and Abd-El-Mottaleb, H.E. (2021), "Finite element based stress and vibration analysis of axially functionally graded rotating beams", Struct. Eng. Mech., 79(1), 23-33. https://doi.org/10.12989/sem.2021.79.1.023.
  32. Kara, M., Guler, S. and Secgin, A. (2021), "Sensitivity analysis of laminated composite plates with different orientations in low to high order modes", Smart Mater. Struct., 30(8), 085034. https://doi.org/10.1088/1361-665X/ac0f46.
  33. Chang, C.Y., Chang, M.Y. and Huang, J.H. (2004), "Vibration analysis of rotating composite shafts containing randomly oriented reinforcements", Compos. Struct., 63(1), 21-32. https://doi.org/10.1016/S0263-8223(03)00121-1
  34. Kim, W., Argento, A. and Scott, R.A. (1999), "Free vibration of a rotating tapered composite Timoshenko shaft", J. Sound Vib., 226(1), 125-147.  https://doi.org/10.1006/jsvi.1999.2289