DOI QR코드

DOI QR Code

Static and dynamic bending of ball reinforced by CNTs considering agglomeration effect

  • Chenghong Long (Sport Department, Chongqing Jiaotong University) ;
  • Dan Wang (School of Physical Education, Hubei University of Science and Technology) ;
  • H.B. Xiang (Department of Civil Engineering, Murdoch University of Western Australia)
  • Received : 2023.03.21
  • Accepted : 2023.07.26
  • Published : 2023.08.25

Abstract

In this paper, dynamic and static bending of ball modelled by nanocomposite microbeam by nanoparticles seeing agglomeration is presented. The structural damping is considered by Kelvin-Voigt model. The agglomeration effects are assumed using Mori-Tanaka model. The football ball is modeled by third order shear deformation theory (TSDT). The motion equations are derived by principle of Hamilton's and energy method assuming size effects on the basis of Eringen theory. Using differential quadrature method (DQM) and Newmark method, the static and dynamic deflections of the structure are obtained. The effects of agglomeration and CNTs volume percent, damping of structure, nonlocal parameter, length and thickness of micro-beam are presented on the static and dynamic deflections of the nanocomposite structure. Results show that with increasing CNTs volume percent, the maximum dimensionless dynamic deflection is reduced about 17%. In addition, assuming CNTs agglomeration increases the dimensionless dynamic deflection about 14%. It is also found that with increasing the CNTs volume percent from 0 to 0.15, the static deflection is decreased about 3 times due to the enhance in the stiffness of the structure. In addition, with enhancing the nonlocal parameters, the dynamic deflection is increased about 3.1 times.

Keywords

References

  1. Alesadi, A., Galehdari, M. and Shojaee, S. (2017), "Free vibration and buckling analysis of cross-ply laminated composite plates using Carrera's unified formulation based on Isogeometric approach", Comput. Struct., 183, 38-47. https://doi.org/10.1016/j.compstruc.2017.01.013.
  2. Benahmed, A., Fahsi, B., Benzair, A., Zidour, M., Bourada, F. and Tounsi, A., (2019),"Critical buckling of functionally graded nanoscale beam with porosities using nonlocal higher-order shear deformation", Struct. Eng. Mech., 69, 457-466. https://doi.org/10.12989/sem.2019.69.4.457.
  3. Berghouti, H., Adda Bedia, E., Benkhedda, A. and Tounsi, A. (2023), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. http://dx.doi.org/10.12989/anr.2023.7.5.351.
  4. Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2018), "Buckling of beams retrofitted with Nano-Fiber Reinforced Polymer (NFRP), Comput., 18, 1053-106. https://doi.org/10.12989/cac.2016.18.6.1053.
  5. Eslami-Farsani, R. and Shahrabi-Farahani, A. (2017), "Investigation on the flexural response of multiscale anisogrid composite panels reinforced with carbon fibers and multi-walled carbon nanotubes", J. Compos. Mat., 52, 225-233. https://doi.org/10.1177/0021998317704981.
  6. Eltaher, M.A. and Mohamed, S.A. (2020), "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel Compos. Struct., 34, 241-260. https://doi.org/10.12989/scs.2020.34.2.241.
  7. Khelifa, Z., Hadji, L., Hassaine Daouadji, T. and Bourada, M., (2018),"Buckling response with stretching effect of carbon nanotube-reinforced composite beams resting on elastic foundation", Struct. Eng. Mech., 67, 125-130. https://doi.org/10.12989/sem.2018.67.2.125.
  8. Khosravi, H. and Eslami-Farsani, R. (2016), "Reinforcing effect of surface-modified multiwalled carbon nanotubes on flexural response of E-glass/epoxy isogrid-stiffened composite panels", Polym. Compos., 39, 677-686, https://doi.org/10.1002/pc.24118.
  9. Kolahchi, R., Bidgoli, M.R., Beygipoor, G. and Fakhar, M.H. (2015), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Technol., 29, 3669-3677. https://doi.org/10.1007/s12206-015-0811-9.
  10. Kolahchi, R., Hosseini, H. and Esmailpour, M., (2016a),"Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032.
  11. Kolahchi, R., Safari, M. and Esmailpour, M., (2016b), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023.
  12. Mehri, M., Asadi, H. and Wang, Q. (2016), "Buckling and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method", Comput. Meth. Appl. Mech. Eng., 303, 75-100. https://doi.org/10.1016/j.cma.2016.01.017.
  13. Mehar, K. and Panda, S.K. (2023), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181 http://dx.doi.org/10.12989/anr.2023.7.3.181.
  14. Mosharrafian, F. and Kolahchi, R. (2016), "Nanotechnology, smartness and orthotropic nonhomogeneous elastic medium effects on buckling of piezoelectric pipes", Struct. Eng. Mech., 58, 931-947. https://doi.org/10.12989/sem.2016.58.5.931.
  15. Motezaker, M. and Eyvazian, A. (2020), "Post-buckling analysis of Mindlin Cut out-plate reinforced by FG-CNTs", Steel Compos. Struct., 34, 289-297. https://doi.org/10.12989/scs.2020.34.2.289.
  16. Motezaker, M. and Eyvazian, A. (2020), "Buckling load optimization of beam reinforced by nanoparticles", Struct. Eng. Mech., 73, 481-486. https://doi.org/10.12989/sem.2020.73.5.481.
  17. Mun, S. and Cho, Y-H. (2012), "Modified harmony search optimization for constrained design problems", Expert Syst. Applicat., 39, 419-423, https://doi.org/10.1016/j.eswa.2011.07.031.
  18. Nejati, M., Eslampanah, A. and Najafizadeh, M. (2016), "Buckling and vibration analysis of functionally graded carbon nanotube-reinforced beam under axial load", Int. J. Appl. Mech., 8, 1650008, 10.1142/S1758825116500083.
  19. Pandey, H.K., Hirwani, C.K., Sharma, N., Katariya, P.V., Dewangan, H.C. and Panda, S.K. (2023), "Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses-An FEM approach and experimental verification", Adv. Nano Res., 7(6), 419-429. http://dx.doi.org/10.12989/anr.2023.7.6.419. 
  20. Saligheh, O., Forouharshad, M., Arasteh, R., Eslami-Farsani, R., Khajavi, R. and Yadollah Roudbari, B. (2013), "The effect of multi-walled carbon nanotubes on morphology, crystallinity and mechanical properties of PBT/MWCNT composite nanofibers", J. Polym. Res., 20, 1-6. https://doi.org/10.1007/s10965-012-0065-5.
  21. Thai, H-T. and Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009.
  22. Vodenitcharova, T. and Zhang, L. (2006),"Bending and local buckling of a nanocomposite beam reinforced by a single-walled carbon nanotube", Int. J. solids Struct., 43, 3006-3024. https://doi.org/10.1016/j.ijsolstr.2005.05.014.
  23. Yang, J., Wu, H. and Kitipornchai, S. (2017), "Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams", Compos. Struct., 161. 111-118. https://doi.org/10.1016/j.compstruct.2016.11.048.
  24. Yas, M. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Press. Vess. Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012.
  25. Zamanian, M., Kolahchi, R. and Bidgoli, M.R. (2017), "Agglomeration effects on the buckling behaviour of embedded beams reinforced with SiO2 nano-particles", Wind. Struct., 24, 43-57. https://doi.org/10.12989/was.2017.24.1.043.