DOI QR코드

DOI QR Code

CD38 Inhibition Protects Fructose-Induced Toxicity in Primary Hepatocytes

  • Soo-Jin Lee (Department of Physiology, Ajou University School of Medicine) ;
  • Sung-E Choi (Department of Physiology, Ajou University School of Medicine) ;
  • Seokho Park (Department of Physiology, Ajou University School of Medicine) ;
  • Yoonjung Hwang (Department of Physiology, Ajou University School of Medicine) ;
  • Youngho Son (Department of Physiology, Ajou University School of Medicine) ;
  • Yup Kang (Department of Physiology, Ajou University School of Medicine)
  • 투고 : 2023.03.23
  • 심사 : 2023.06.14
  • 발행 : 2023.08.31

초록

A fructose-enriched diet is thought to contribute to hepatic injury in developing non-alcoholic steatohepatitis (NASH). However, the cellular mechanism of fructose-induced hepatic damage remains poorly understood. This study aimed to determine whether fructose induces cell death in primary hepatocytes, and if so, to establish the underlying cellular mechanisms. Our results revealed that treatment with high fructose concentrations for 48 h induced mitochondria-mediated apoptotic death in mouse primary hepatocytes (MPHs). Endoplasmic reticulum stress responses were involved in fructose-induced death as the levels of phosho-eIF2α, phospho-C-Jun-N-terminal kinase (JNK), and C/EBP homologous protein (CHOP) increased, and a chemical chaperone tauroursodeoxycholic acid (TUDCA) prevented cell death. The impaired oxidation metabolism of fatty acids was also possibly involved in the fructose-induced toxicity as treatment with an AMP-activated kinase (AMPK) activator and a PPAR-α agonist significantly protected against fructose-induced death, while carnitine palmitoyl transferase I inhibitor exacerbated the toxicity. However, uric acid-mediated toxicity was not involved in fructose-induced death as uric acid was not toxic to MPHs, and the inhibition of xanthine oxidase (a key enzyme in uric acid synthesis) did not affect cell death. On the other hand, treatment with inhibitors of the nicotinamide adenine dinucleotide (NAD)+-consuming enzyme CD38 or CD38 gene knockdown significantly protected against fructose-induced toxicity in MPHs, and fructose treatment increased CD38 levels. These data suggest that CD38 upregulation plays a role in hepatic injury in the fructose-enriched diet-mediated NASH. Thus, CD38 inhibition may be a promising therapeutic strategy to prevent fructose-enriched diet-mediated NASH.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grants (2018R1A6A3A11047049 and 2022R1A2C1091832) funded by the Korean government (MSIT).

참고문헌

  1. Andrabi, S.A., Dawson, T.M., and Dawson, V.L. (2008). Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann. N. Y. Acad. Sci. 1147, 233-241. https://doi.org/10.1196/annals.1427.014
  2. Berger, J.M. and Moon, Y.A. (2021). Increased hepatic lipogenesis elevates liver cholesterol content. Mol. Cells 44, 116-125. https://doi.org/10.14348/molcells.2021.2147
  3. Begriche, K., Massart, J., Robin, M.A., Bonnet, F., and Fromenty, B. (2013). Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease. Hepatology 58, 1497-1507. https://doi.org/10.1002/hep.26226
  4. Berardo, C., Di Pasqua, L.G., Cagna, M., Richelmi, P., Vairetti, M., and Ferrigno, A. (2020). Nonalcoholic fatty liver disease and non-alcoholic steatohepatitis: current issues and future perspectives in preclinical and clinical research. Int. J. Mol. Sci. 21, 9646.
  5. Bitterman, K.J., Anderson, R.M., Cohen, H.Y., Latorre-Esteves, M., and Sinclair, D.A. (2002). Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J. Biol. Chem. 277, 45099-45107. https://doi.org/10.1074/jbc.M205670200
  6. Brenner, C., Galluzzi, L., Kepp, O., and Kroemer, G. (2013). Decoding cell death signals in liver inflammation. J. Hepatol. 59, 583-594. https://doi.org/10.1016/j.jhep.2013.03.033
  7. Camacho-Pereira, J., Tarrago, M.G., Chini, C.C.S., Nin, V., Escande, C., Warner, G.M., Puranik, A S., Schoon, R.A., Reid, J.M., Galina, A., et al. (2016). CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab. 23, 1127-1139. https://doi.org/10.1016/j.cmet.2016.05.006
  8. Canto, C., Houtkooper, R.H., Pirinen, E., Youn, D.Y., Oosterveer, M.H., Cen, Y., Fernandez-Marcos, P.J., Yamamoto, H., Andreux, P.A., Cettour-Rose, P., et al. (2012). The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab.15, 838-847. https://doi.org/10.1016/j.cmet.2012.04.022
  9. Cazanave, S.C. and Gores, G.J. (2010). Mechanisms and clinical implications of hepatocyte lipoapoptosis. Clin. Lipidol. 5, 71-85. https://doi.org/10.2217/clp.09.85
  10. Choi, Y., Abdelmegeed, M.A., and Song, B.J. (2017). Diet high in fructose promotes liver steatosis and hepatocyte apoptosis in C57BL/6J female mice: role of disturbed lipid homeostasis and increased oxidative stress. Food Chem. Toxicol. 103, 111-121. https://doi.org/10.1016/j.fct.2017.02.039
  11. Choi, Y.J., Shin, H.S., Choi, H.S., Park, J.W., Jo, I., Oh, E.S., Lee, K.Y., Lee, B.H., Johnson, R.J., and Kang, D. H. (2014). Uric acid induces fat accumulation via generation of endoplasmic reticulum stress and SREBP-1c activation in hepatocytes. Lab. Invest. 94, 1114-1125. https://doi.org/10.1038/labinvest.2014.98
  12. Covarrubias, A.J., Perrone, R., Grozio, A., and Verdin, E. (2021). NAD+ metabolism and its roles in cellular processes during ageing. Nat. Rev. Mol. Cell Biol. 22, 119-141. https://doi.org/10.1038/s41580-020-00313-x
  13. Dall, M., Penke, M., Sulek, K., Matz-Soja, M., Holst, B., Garten, A., Kiess, W., and Treebak, J.T. (2018). Hepatic NAD+ levels and NAMPT abundance are unaffected during prolonged high-fat diet consumption in C57BL/6JBomTac mice. Mol. Cell Endocrinol. 473, 245-256. https://doi.org/10.1016/j.mce.2018.01.025
  14. DeBerardinis, R.J. and Chandel, N.S. (2016). Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200.
  15. de Oliveira, G.C., Kanamori, K.S., Auxiliadora-Martins, M., Chini, C.C.S., and Chini, E.N. (2018). Measuring CD38 hydrolase and cyclase activities: 1,N6-Ethenonicotinamide Adenine Dinucleotide (ε-NAD) and Nicotinamide Guanine Dinucleotide (NGD) fluorescence-based methods. Bio Protoc. 8, e2938.
  16. Federico, A., Rosato, V., Masarone, M., Torre, P., Dallio, M., Romeo, M., and Persico, M. (2021). The role of fructose in non-alcoholic steatohepatitis: old relationship and new insights. Nutrients 13, 1314.
  17. Gaggini, M., Morelli, M., Buzzigoli, E., DeFronzo, R.A., Bugianesi, E., and Gastaldelli, A. (2013). Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients 5, 1544-1560. https://doi.org/10.3390/nu5051544
  18. Gariani, K., Menzies, K.J., Ryu, D., Wegner, C.J., Wang, X., Ropelle, E.R., Moullan, N., Zhang, H., Perino, A., Lemos, V., et al. (2016). Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice. Hepatology 63, 1190-1204. https://doi.org/10.1002/hep.28245
  19. Gariani, K., Ryu, D., Menzies, K.J., Yi, H.S., Stein, S., Zhang, H., Perino, A., Lemos, V., Katsyuba, E., Jha, P., et al. (2017). Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease. J. Hepatol. 66, 132-141. https://doi.org/10.1016/j.jhep.2016.08.024
  20. Geidl-Flueck, B. and Gerber, P.A. (2017). Insights into the hexose liver metabolism-glucose versus fructose. Nutrients 9, 1026.
  21. Geng, Y., Faber, K.N., de Meijer, V.E., Blokzijl, H., and Moshage, H. (2021). How does hepatic lipid accumulation lead to lipotoxicity in non-alcoholic fatty liver disease? Hepatol. Int. 15, 21-35. https://doi.org/10.1007/s12072-020-10121-2
  22. Guarino, M. and Dufour, J.F. (2019). Nicotinamide and NAFLD: is there nothing new under the sun? Metabolites 9, 180.
  23. Haffar, T., Berube-Simard, F., and Bousette, N. (2015). Impaired fatty acid oxidation as a cause for lipotoxicity in cardiomyocytes. Biochem. Biophys. Res. Commun. 468, 73-78. https://doi.org/10.1016/j.bbrc.2015.10.162
  24. Houtkooper, R.H., Pirinen, E., and Auwerx, J. (2012). Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol. 13, 225-238. https://doi.org/10.1038/nrm3293
  25. Hu, H., Tian, M., Ding, C., and Yu, S. (2019). The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front. Immunol. 9, 3083.
  26. Hui, H., Huang, D., McArthur, D., Nissen, N., Boros, L.G., and Heaney, A.P. (2009). Direct spectrophotometric determination of serum fructose in pancreatic cancer patients. Pancreas 38, 706-712. https://doi.org/10.1097/MPA.0b013e3181a7c6e5
  27. Imai, S. and Guarente, L. (2010). Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends Pharmacol. Sci. 31, 212-220. https://doi.org/10.1016/j.tips.2010.02.003
  28. Ishimoto, T., Lanaspa, M.A., Rivard, C.J., Roncal-Jimenez, C.A., Orlicky, D.J., Cicerchi, C., McMahan, R.H., Abdelmalek, M.F., Rosen, H.R., Jackman, M.R., et al. (2013). High-fat and high-sucrose (western) diet induces steatohepatitis that is dependent on fructokinase. Hepatology 58, 1632-1643. https://doi.org/10.1002/hep.26594
  29. Iurlaro, R. and Munoz-Pinedo, C. (2016). Cell death induced by endoplasmic reticulum stress. FEBS J. 283, 2640-2652. https://doi.org/10.1111/febs.13598
  30. Jensen, T., Abdelmalek, M.F., Sullivan, S., Nadeau, K.J., Green, M., Roncal, C., Nakagawa, T., Kuwabara, M., Sato, Y., Kang, D.H., et al. (2018). Fructose and sugar: a major mediator of non-alcoholic fatty liver disease. J. Hepatol. 68, 1063-1075. https://doi.org/10.1016/j.jhep.2018.01.019
  31. Kanda, T., Matsuoka, S., Yamazaki, M., Shibata, T., Nirei, K., Takahashi, H., Kaneko, T., Fujisawa, M., Higuchi, T., Nakamura, H., et al. (2018). Apoptosis and non-alcoholic fatty liver diseases. World J. Gastroenterol. 24, 2661-2672. https://doi.org/10.3748/wjg.v24.i25.2661
  32. Katsyuba, E., Mottis, A., Zietak, M., De Franco, F., van der Velpen, V., Gariani, K., Ryu, D., Cialabrini, L., Matilainen, O., Liscio, P., et al. (2018). De novo NAD+ synthesis enhances mitochondrial function and improves health. Nature 563, 354-359. https://doi.org/10.1038/s41586-018-0645-6
  33. Klimova, N. and Kristian, T. (2019). Multi-targeted effect of nicotinamide mononucleotide on brain bioenergetic metabolism. Neurochem. Res. 44, 2280-2287. https://doi.org/10.1007/s11064-019-02729-0
  34. Koves, T.R., Ussher, J.R., Noland, R.C., Slentz, D., Mosedale, M., Ilkayeva, O., Bain, J., Stevens, R., Dyck, J.R., Newgard, C. B., et al. (2008). Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 7, 45-56. https://doi.org/10.1016/j.cmet.2007.10.013
  35. Koyama, Y. and Brenner, D.A. (2017). Liver inflammation and fibrosis. J. Clin. Invest. 127, 55-64. https://doi.org/10.1172/JCI88881
  36. Krenkel, O., Puengel, T., Govaere, O., Abdallah, A.T., Mossanen, J.C., Kohlhepp, M., Liepelt, A., Lefebvre, E., Luedde, T., Hellerbrand, C., et al. (2018). Therapeutic inhibition of inflammatory monocyte recruitment reduces steatohepatitis and liver fibrosis. Hepatology 67, 1270-1283. https://doi.org/10.1002/hep.29544
  37. Lanaspa, M.A., Sanchez-Lozada, L.G., Choi, Y.J., Cicerchi, C., Kanbay, M., Roncal-Jimenez, C.A., Ishimoto, T., Li, N., Marek, G., Duranay, M., et al. (2012). Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver. J. Biol. Chem. 287, 40732-40744. https://doi.org/10.1074/jbc.M112.399899
  38. Lipke, K., Kubis-Kubiak, A., and Piwowar, A. (2022). Molecular Mechanism of lipotoxicity as an interesting aspect in the development of pathological states-current view of knowledge. Cells 11, 844.
  39. Ly, L.D., Ly, D.D., Nguyen, N.T., Kim, J.H., Yoo, H., Chung, J., Lee, M.S., Cha, S.K., and Park, K.S. (2020). Mitochondrial Ca2+ uptake relieves palmitate-induced cytosolic Ca2+ overload in MIN6 cells. Mol. Cells 43, 66-75.
  40. Marra, F. and Svegliati-Baroni, G. (2018). Lipotoxicity and the gut-liver axis in NASH pathogenesis. J. Hepatol. 68, 280-295. https://doi.org/10.1016/j.jhep.2017.11.014
  41. Martin-Guerrero, S.M., Casado, P., Hijazi, M., Rajeeve, V., Plaza-Diaz, J., Abadia-Molina, F., Navascues, J., Cuadros, M.A., Cutillas, P.R., and MartinOliva, D. (2020). PARP-1 activation after oxidative insult promotes energy stress-dependent phosphorylation of YAP1 and reduces cell viability. Biochem. J. 477, 4491-4513. https://doi.org/10.1042/BCJ20200525
  42. Mouchiroud, L., Houtkooper, R.H., and Auwerx, J. (2013). NAD+ metabolism: a therapeutic target for age-related metabolic disease. Crit. Rev. Biochem. Mol. Biol. 48, 397-408. https://doi.org/10.3109/10409238.2013.789479
  43. Mukhopadhyay, P., Horvath, B., Rajesh, M., Varga, Z.V., Gariani, K., Ryu, D., Cao, Z., Holovac, E., Park, O., Zhou, Z., et al. (2017). PARP inhibition protects against alcoholic and non-alcoholic steatohepatitis. J. Hepatol. 66, 589-600. https://doi.org/10.1016/j.jhep.2016.10.023
  44. Nassir, F. and Ibdah, J.A. (2016). Sirtuins and nonalcoholic fatty liver disease. World J. Gastroenterol. 22, 10084-10092. https://doi.org/10.3748/wjg.v22.i46.10084
  45. Nassir, F., Rector, R.S., Hammoud, G.M., and Ibdah, J.A. (2015). Pathogenesis and prevention of hepatic steatosis. Gastroenterol. Hepatol. 11, 167-175.
  46. Pardo, V., Gonzalez-Rodriguez, A., Muntane, J., Kozma, S.C., and Valverde, A.M. (2015). Role of hepatocyte S6K1 in palmitic acid-induced endoplasmic reticulum stress, lipotoxicity, insulin resistance and in oleic acid-induced protection. Food Chem. Toxicol. 80, 298-309. https://doi.org/10.1016/j.fct.2015.03.029
  47. Parthasarathy, G., Revelo, X., and Malhi, H. (2020). Pathogenesis of nonalcoholic steatohepatitis: an overview. Hepatol. Commun. 4, 478-492. https://doi.org/10.1002/hep4.1479
  48. Peng, C., Stewart, A.G., Woodman, O.L., Ritchie, R.H., and Qin, C.X. (2020). Non-alcoholic steatohepatitis: a review of its mechanism, models and medical treatments. Front. Pharmacol. 11, 603926.
  49. Penke, M., Larsen, P.S., Schuster, S., Dall, M., Jensen, B.A., Gorski, T., Meusel, A., Richter, S., Vienberg, S.G., Treebak, J.T., et al. (2015). Hepatic NAD salvage pathway is enhanced in mice on a high-fat diet. Mol. Cell. Endocrinol. 412, 65-72. https://doi.org/10.1016/j.mce.2015.05.028
  50. Pham, T.X., Bae, M., Kim, M.B., Lee, Y., Hu, S., Kang, H., Park, Y.K., and Lee, J.Y. (2019). Nicotinamide riboside, an NAD+ precursor, attenuates the development of liver fibrosis in a diet-induced mouse model of liver fibrosis. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 2451-2463. https://doi.org/10.1016/j.bbadis.2019.06.009
  51. Pimenta, A.S., Gaidhu, M.P., Habib, S., So, M., Fediuc, S., Mirpourian, M., Musheev, M., Curi, R., and Ceddia, R.B. (2008). Prolonged exposure to palmitate impairs fatty acid oxidation despite activation of AMP-activated protein kinase in skeletal muscle cells. J. Cell. Physiol. 217, 478-485. https://doi.org/10.1002/jcp.21520
  52. Rada, P., Gonzalez-Rodriguez, A., Garcia-Monzon, C., and Valverde, A.M. (2020). Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver? Cell Death Dis. 11, 802.
  53. Ramanathan, R., Ali, A.H., and Ibdah, J.A. (2022). Mitochondrial dysfunction plays central role in nonalcoholic fatty liver disease. Int. J. Mol. Sci. 23, 7280.
  54. Roeb, E. and Weiskirchen, R. (2021). Fructose and non-alcoholic steatohepatitis. Front. Pharmacol. 12, 634344.
  55. Salech, F., Ponce, D.P., Paula-Lima, A.C., SanMartin, C.D., and Behrens, M.I. (2020). Nicotinamide, a Poly [ADP-Ribose] polymerase 1 (PARP-1) inhibitor, as an adjunctive therapy for the treatment of Alzheimer's disease. Front. Aging Neurosci. 12, 255.
  56. Softic, S., Cohen, D.E., and Kahn, C.R. (2016). Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig. Dis. Sci. 61, 1282-1293. https://doi.org/10.1007/s10620-016-4054-0
  57. Softic, S., Meyer, J.G., Wang, G.X., Gupta, M.K., Batista, T.M., Lauritzen, H.P.M.M., Fujisaka, S., Serra, D., Herrero, L., Willoughby, J., et al. (2019). Dietary sugars alter hepatic fatty acid oxidation via transcriptional and post-translational modifications of mitochondrial proteins. Cell Metab. 30, 735-753.e4. https://doi.org/10.1016/j.cmet.2019.09.003
  58. Softic, S., Gupta, M.K., Wang, G.X., Fujisaka, S., O'Neill, B.T., Rao, T.N., Willoughby, J., Harbison, C., Fitzgerald, K., Ilkayeva, O., et al. (2017). Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling. J. Clin. Invest. 127, 4059-4074. https://doi.org/10.1172/JCI94585
  59. Spahis, S., Delvin, E., Borys, J.M., and Levy, E. (2017). Oxidative stress as a critical factor in nonalcoholic fatty liver disease pathogenesis. Antioxid. Redox Signal. 26, 519-541. https://doi.org/10.1089/ars.2016.6776
  60. Sugimoto, K., Hosotani, T., Kawasaki, T., Nakagawa, K., Hayashi, S., Nakano, Y., Inui, H., and Yamanouchi, T. (2010). Eucalyptus leaf extract suppresses the postprandial elevation of portal, cardiac and peripheral fructose concentrations after sucrose ingestion in rats. J. Clin. Biochem. Nutr. 46, 205-211. https://doi.org/10.3164/jcbn.09-93
  61. Sunny, N.E., Bril, F., and Cusi, K. (2017). Mitochondrial adaptation in nonalcoholic fatty liver disease: novel mechanisms and treatment strategies. Trends Endocrinol. Metab. 28, 250-260. https://doi.org/10.1016/j.tem.2016.11.006
  62. Wang, D.X., Qing, S.L., Miao, Z.W., Luo, H.Y., Tian, J.S., Zhang, X.P., Wang, S.N., Zhang, T.G., and Miao, C.Y. (2023). Hepatic nampt deficiency aggravates dyslipidemia and fatty liver in high fat diet fed mice. Cells 12, 568.
  63. Xie, L., Wen, K., Li, Q., Huang, C.C., Zhao, J.L., Zhao, Q.H., Xiao, Y.F., Guan, X.H., Qian, Y.S., Gan, L., et al. (2021). CD38 deficiency protects mice from high fat diet-induced nonalcoholic fatty liver disease through activating NAD+/Sirtuins signaling pathways-mediated inhibition of lipid accumulation and oxidative stress in hepatocytes. Int. J. Biol. Sci. 17, 4305-4315. https://doi.org/10.7150/ijbs.65588
  64. Xie, N., Zhang, L., Gao, W., Huang, C., Huber, P.E., Zhou, X., Li, C., Shen, G., and Zou, B. (2020). NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct. Target. Ther. 5, 227.
  65. Yamaguchi, K., Yang, L., McCall, S., Huang, J., Yu, X.X., Pandey, S.K., Bhanot, S., Monia, B.P., Li, Y.X., and Diehl, A.M. (2007). Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 45, 1366-1374. https://doi.org/10.1002/hep.21655
  66. Yoshino, J., Mills, K.F., Yoon, M.J., and Imai, S. (2011). Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14, 528-536. https://doi.org/10.1016/j.cmet.2011.08.014
  67. Zhang, D.M., Jiao, R.Q., and Kong, L.D. (2017). High dietary fructose: direct or indirect dangerous factors disturbing tissue and organ functions. Nutrients, 9, 335.
  68. Zhou, Y., Wang, Q., Mark Evers, B., and Chung, D.H. (2006). Oxidative stress-induced intestinal epithelial cell apoptosis is mediated by p38 MAPK. Biochem. Biophys. Res. Commun. 350, 860-865. https://doi.org/10.1016/j.bbrc.2006.09.103
  69. Zeng, C. and Chen, M. (2022). Progress in nonalcoholic fatty liver disease: SIRT family regulates mitochondrial biogenesis. Biomolecules 12, 1079.