DOI QR코드

DOI QR Code

Anatomical and Functional Comparison of the Caudate Tail in Primates and the Tail of the Striatum in Rodents: Implications for Sensory Information Processing and Habitual Behavior

  • Keonwoo Lee (Cognitive Circuitry Laboratory (CoCiLa), School of Biological Sciences, Seoul National University) ;
  • Shin-young An (Cognitive Circuitry Laboratory (CoCiLa), School of Biological Sciences, Seoul National University) ;
  • Jun Park (Cognitive Circuitry Laboratory (CoCiLa), School of Biological Sciences, Seoul National University) ;
  • Seoyeon Lee (Cognitive Circuitry Laboratory (CoCiLa), School of Biological Sciences, Seoul National University) ;
  • Hyoung F. Kim (Cognitive Circuitry Laboratory (CoCiLa), School of Biological Sciences, Seoul National University)
  • 투고 : 2023.03.31
  • 심사 : 2023.05.26
  • 발행 : 2023.08.31

초록

The tail of the striatum (TS) is located at the caudal end in the striatum. Recent studies have advanced our knowledge of the anatomy and function of the TS but also raised questions about the differences between rodent and primate TS. In this review, we compare the anatomy and function of the TS in rodent and primate brains. The primate TS is expanded more caudally during brain development in comparison with the rodent TS. Additionally, five sensory inputs from the cortex and thalamus converge in the rodent TS, but this convergence is not observed in the primate TS. The primate TS, including the caudate tail and putamen tail, primarily receives inputs from the visual areas, implying a specialized function in processing visual inputs for action generation. This anatomical difference leads to further discussion of cellular circuit models to comprehend how the primate brain processes a wider range of complex visual stimuli to produce habitual behavior as compared with the rodent brain. Examining these differences and considering possible neural models may provide better understanding of the anatomy and function of the primate TS.

키워드

과제정보

This work was supported by the Neurological Disorder Research Program (NRF-2020M3E5D9079908), the Korea Research Institute of Bioscience and Biotechnology (KRIBB) Research Initiative Program (KGM4562121) and the Basic Science Research Program (NRF-2019R1A2C2005213) of the National Research Foundation (NRF) by the Korean government (MSIT). Creative-Pioneering Researchers Program through Seoul National University supported this work.

참고문헌

  1. Akiti, K., Tsutsui-Kimura, I., Xie, Y., Mathis, A., Markowitz, J.E., Anyoha, R., Datta, S.R., Mathis, M.W., Uchida, N., and Watabe-Uchida, M. (2022). Striatal dopamine explains novelty-induced behavioral dynamics and individual variability in threat prediction. Neuron 110, 3789-3804. https://doi.org/10.1016/j.neuron.2022.08.022
  2. Baizer, J.S., Robert, D., and Ungerleider, L.G. (1993). Comparison of subcortical connections of inferior temporal and posterior parietal cortex in monkeys. Vis. Neurosci. 10, 59-72. https://doi.org/10.1017/S0952523800003229
  3. Balleine, B.W. and O'Doherty, J.P. (2010). Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 35, 48-69. https://doi.org/10.1038/npp.2009.131
  4. Broschard, M.B., Kim, J., Love, B.C., and Freeman, J.H. (2023). Dorsomedial striatum, but not dorsolateral striatum, is necessary for rat category learning. Neurobiol. Learn. Mem. 199, 107732.
  5. Brovelli, A., Nazarian, B., Meunier, M., and Boussaoud, D. (2011). Differential roles of caudate nucleus and putamen during instrumental learning. Neuroimage 57, 1580-1590. https://doi.org/10.1016/j.neuroimage.2011.05.059
  6. Brown, V.J., Desimone, R., and Mishkin, M. (1995). Responses of cells in the tail of the caudate nucleus during visual discrimination learning. J. Neurophysiol. 74, 1083-1094. https://doi.org/10.1152/jn.1995.74.3.1083
  7. Buerger, A.A., Gross, C.G., and Rocha-Miranda, C.E. (1974). Effects of ventral putamen lesions on discrimination learning by monkeys. J. Comp. Physiol. Psychol. 86, 440-446. https://doi.org/10.1037/h0036142
  8. Caan, W., Perrett, D.I., and Rolls, E.T. (1984). Responses of striatal neurons in the behaving Monkey. 2. Visual processing in the caudal neostriatum. Brain Res. 290, 53-65. https://doi.org/10.1016/0006-8993(84)90735-2
  9. Choi, Y., Shin, E.Y., and Kim, S. (2020). Spatiotemporal dissociation of fMRI activity in the caudate nucleus underlies human de novo motor skill learning. Proc. Natl. Acad. Sci. U. S. A. 117, 23886-23897. https://doi.org/10.1073/pnas.2003963117
  10. Clark, R.E. and Squire, L.R. (2013). Similarity in form and function of the hippocampus in rodents, monkeys, and humans. Proc. Natl. Acad. Sci. U. S. A. 110(Suppl 2), 10365-10370. https://doi.org/10.1073/pnas.1301225110
  11. Cools, R., Barker, R.A., Sahakian, B.J., and Robbins, T.W. (2001). Mechanisms of cognitive set flexibility in Parkinson's disease. Brain 124, 2503-2512. https://doi.org/10.1093/brain/124.12.2503
  12. Copp, A.J., Greene, N.D.E., and Murdoch, J.N. (2003). The genetic basis of mammalian neurulation. Nat. Rev. Genet. 4, 784-793. https://doi.org/10.1038/nrg1181
  13. Delong, M.R. and Wichmann, T. (2007). Circuits and circuit disorders of the basal ganglia. Arch. Neurol. 64, 20-24. https://doi.org/10.1001/archneur.64.1.20
  14. Fernandez-Ruiz, J., Wang, J., Aigner, T.G., and Mishkin, M. (2001). Visual habit formation in monkeys with neurotoxic lesions of the ventrocaudal neostriatum. Proc. Natl. Acad. Sci. U. S. A. 98, 4196-4201. https://doi.org/10.1073/pnas.061022098
  15. Ferrante, R.J., Kowall, N.W., Beal, M.F., Richardson, E.P., Bird, E.D., and Martin, J.B. (1985). Selective sparing of a class of striatal neurons in Huntington's disease. Science 230, 561-563. https://doi.org/10.1126/science.2931802
  16. Flaherty, A.W. and Graybiel, A.M. (1991). Corticostriatal transformations in the primate somatosensory system. Projections from physiologically mapped body-part representations. J. Neurophysiol. 66, 1249-1263. https://doi.org/10.1152/jn.1991.66.4.1249
  17. Fudge, J.L., Breitbart, M.A., Danish, M., and Pannoni, V. (2005). Insular and gustatory inputs to the caudal ventral striatum in primates. J. Comp. Neurol. 490, 101-118. https://doi.org/10.1002/cne.20660
  18. Grahn, J.A., Parkinson, J.A., and Owen, A.M. (2008). The cognitive functions of the caudate nucleus. Prog. Neurobiol. 86, 141-155. https://doi.org/10.1016/j.pneurobio.2008.09.004
  19. Griggs, W.S., Kim, H.F., Ghazizadeh, A., Costello, M.G., Wall, K.M., and Hikosaka, O. (2017). Flexible and stable value coding areas in caudate head and tail receive anatomically distinct cortical and subcortical inputs. Front. Neuroanat. 11, 106.
  20. Guillery, R.W. and Sherman, S.M. (2002). Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron 33, 163-175. https://doi.org/10.1016/S0896-6273(01)00582-7
  21. Guo, L., Walker, W.I., Ponvert, N.D., Penix, P.L., and Jaramillo, S. (2018). Stable representation of sounds in the posterior striatum during flexible auditory decisions. Nat. Commun. 9, 1534.
  22. Haber, S.N., Fudge, J.L., and McFarland, N.R. (2000). Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J. Neurosci. 20, 2369-2382. https://doi.org/10.1523/JNEUROSCI.20-06-02369.2000
  23. Haber, S.N., Kim, K.S., Mailly, P., and Calzavara, R. (2006). Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. J. Neurosci. 26, 8368-8376. https://doi.org/10.1523/JNEUROSCI.0271-06.2006
  24. Heilbronner, S.R., Rodriguez-Romaguera, J., Quirk, G.J., Groenewegen, H.J., and Haber, S.N. (2016). Circuit-based corticostriatal homologies between rat and primate. Biol. Psychiatry 80, 509-521. https://doi.org/10.1016/j.biopsych.2016.05.012
  25. Hikosaka, O. and Wurtz, R.H. (1983). Effects on eye movements of a GABA agonist and antagonist injected into monkey superior colliculus. Brain Res. 272, 368-372. https://doi.org/10.1016/0006-8993(83)90586-3
  26. Howes, O.D. and Kapur, S. (2009). The dopamine hypothesis of schizophrenia: version III-the final common pathway. Schizophr. Bull. 35, 549-562. https://doi.org/10.1093/schbul/sbp006
  27. Hu, H. and Jayaraman, A. (1986). The projection pattern of the suprageniculate nucleus to the caudate nucleus in cats. Brain Res. 368, 201-203. https://doi.org/10.1016/0006-8993(86)91064-4
  28. Hwang, S.H., Ra, Y., Paeng, S., and Kim, H.F. (2022). Motivational salience drives habitual gazes during value memory retention and facilitates relearning of forgotten value. iScience 25, 105104.
  29. Jiang, H. and Kim, H.F. (2018). Anatomical inputs from the sensory and value structures to the tail of the rat striatum. Front. Neuroanat. 12, 30.
  30. Kang, J., Kim, H., Hwang, S.H., Han, M., Lee, S.H., and Kim, H.F. (2021). Primate ventral striatum maintains neural representations of the value of previously rewarded objects for habitual seeking. Nat. Commun. 12, 2100.
  31. Kim, B. and Im, H.I. (2019). The role of the dorsal striatum in choice impulsivity. Ann. N. Y. Acad. Sci. 1451, 92-111. https://doi.org/10.1111/nyas.13961
  32. Kim, H.F. (2021). Brain substrates for automatic retrieval of value memory in the primate basal ganglia. Mol. Brain 14, 168.
  33. Kim, H.F. and Hikosaka, O. (2013). Distinct basal ganglia circuits controlling behaviors guided by flexible and stable values. Neuron 79, 1001-1010. https://doi.org/10.1016/j.neuron.2013.06.044
  34. Kim, H.F., Ghazizadeh, A., and Hikosaka, O. (2014). Separate groups of dopamine neurons innervate caudate head and tail encoding flexible and stable value memories. Front. Neuroanat. 8, 120.
  35. Kim, H.F., Ghazizadeh, A., and Hikosaka, O. (2015). Dopamine neurons encoding long-term memory of object value for habitual behavior. Cell 163, 1165-1175. https://doi.org/10.1016/j.cell.2015.10.063
  36. Kim, H.F., Griggs, W.S., and Hikosaka, O. (2020). Long-term value memory in the primate posterior thalamus for fast automatic action. Curr. Biol. 30, 2901-2911.e3. https://doi.org/10.1016/j.cub.2020.05.047
  37. Knowlton, B.J. and Patterson, T.K. (2018). Habit formation and the striatum. Curr. Top. Behav. Neurosci. 37, 275-295. https://doi.org/10.1007/7854_2016_451
  38. Kravitz, D.J., Saleem, K.S., Baker, C.I., Ungerleider, L.G., and Mishkin, M. (2013). The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn. Sci. 17, 26-49. https://doi.org/10.1016/j.tics.2012.10.011
  39. Kunimatsu, J., Maeda, K., and Hikosaka, O. (2019). The caudal part of putamen represents the historical object value information. J. Neurosci. 39, 1709-1719.
  40. Landisman, C.E. and Connors, B.W. (2007). VPM and PoM nuclei of the rat somatosensory thalamus: intrinsic neuronal properties and corticothalamic feedback. Cereb. Cortex 17, 2853-2865. https://doi.org/10.1093/cercor/bhm025
  41. Liljeholm, M. and O'Doherty, J.P. (2012). Contributions of the striatum to learning, motivation, and performance: an associative account. Trends Cogn. Sci. 16, 467-475. https://doi.org/10.1016/j.tics.2012.07.007
  42. Menegas, W., Akiti, K., Amo, R., Uchida, N., and Watabe-Uchida, M. (2018). Dopamine neurons projecting to the posterior striatum reinforce avoidance of threatening stimuli. Nat. Neurosci. 21, 1421-1430. https://doi.org/10.1038/s41593-018-0222-1
  43. Mestres-Misse, A., Turner, R., and Friederici, A.D. (2012). An anterior-posterior gradient of cognitive control within the dorsomedial striatum. Neuroimage 62, 41-47. https://doi.org/10.1016/j.neuroimage.2012.05.021
  44. Middleton, F.A. and Strick, P.L. (1996). The temporal lobe is a target of output from the basal ganglia. Proc. Natl. Acad. Sci. U. S. A. 93, 8683-8687. https://doi.org/10.1073/pnas.93.16.8683
  45. Mishkin, M., Malamut, B., and Bachevalier, J. (1984). Memories and habits: two neural systems. In Neurobiology of Human Learning and Memory, G. Lynch, J.L. McGaugh, and N.M. Weinberger, eds. (New York: Guilford Press), pp. 65-77.
  46. Ogata, K., Kadono, F., Hirai, Y., Inoue, K.I., Takada, M., Karube, F., and Fujiyama, F. (2022). Conservation of the direct and indirect pathway dichotomy in mouse caudal striatum with uneven distribution of dopamine receptor D1- and D2-expressing neurons. Front. Neuroanat. 16, 809446.
  47. Ogata, S., Miyamoto, Y., Shigematsu, N., Esumi, S., and Fukuda, T. (2022). The tail of the mouse striatum contains a novel large type of GABAergic neuron incorporated in a unique disinhibitory pathway that relays auditory signals to subcortical nuclei. J. Neurosci. 42, 8078-8094. https://doi.org/10.1523/JNEUROSCI.2236-21.2022
  48. Oliveira-Maia, A.J., Roberts, C.D., Simon, S.A., and Nicolelis, M.A. (2011). Gustatory and reward brain circuits in the control of food intake. Adv. Tech. Stand. Neurosurg. 36, 31-59. https://doi.org/10.1007/978-3-7091-0179-7_3
  49. Parent, A., Sato, F., Wu, Y., Gauthier, J., Levesque, M., and Parent, M. (2000). Organization of the basal ganglia: the importance of axonal collateralization. Trends Neurosci. 23(10 Suppl), S20-S27. https://doi.org/10.1016/S1471-1931(00)00022-7
  50. Richfield, E.K., Twyman, R., and Berent, S. (1987). Neurological syndrome following bilateral damage to the head of the caudate nuclei. Ann. Neurol. 22, 768-771. https://doi.org/10.1002/ana.410220615
  51. Saint-CyrSaint-Cyr, J.A., Ungerleider, L.G., and Desimone, R. (1990). Organization of visual cortical inputs to the striatum and subsequent outputs to the pallido-nigral complex in the monkey. J. Comp. Neurol. 298, 129-156. https://doi.org/10.1002/cne.902980202
  52. Schmack, K., Bosc, M., Ott, T., Sturgill, J.F., and Kepecs, A. (2021). Striatal dopamine mediates hallucination-like perception in mice. Science 372, eabf4740.
  53. Seger, C.A. (2013). The visual corticostriatal loop through the tail of the caudate: circuitry and function. Front. Syst. Neurosci. 7, 104.
  54. Simpson, E.H., Kellendonk, C., and Kandel, E. (2010). A possible role for the striatum in the pathogenesis of the cognitive symptoms of schizophrenia. Neuron 65, 585-596. https://doi.org/10.1016/j.neuron.2010.02.014
  55. Sommer, M.A. and Wurtz, R.H. (2008). Brain circuits for the internal monitoring of movements. Annu. Rev. Neurosci. 31, 31-338. https://doi.org/10.1146/annurev.neuro.31.060407.125627
  56. Stiles, J. and Jernigan, T.L. (2010). The basics of brain development. Neuropsychol. Rev. 20, 327-348. https://doi.org/10.1007/s11065-010-9148-4
  57. Strange, B.A., Witter, M.P., Lein, E.S., and Moser, E.I. (2014). Functional organization of the hippocampal longitudinal axis. Nat. Rev. Neurosci. 15, 655-669. https://doi.org/10.1038/nrn3785
  58. Takada, M., Itoh, K., Yasui, Y., Sugimoto, T., and Mizuno, N. (1985). Topographical projections from the posterior thalamic regions to the striatum in the cat, with reference to possible tecto-thalamo-striatal connections. Exp. Brain Res. 60, 385-396. https://doi.org/10.1007/BF00235934
  59. Tricomi, E., Balleine, B.W., and O'Doherty, J.P. (2009). A specific role for posterior dorsolateral striatum in human habit learning. Eur. J. Neurosci. 29, 2225-2232. https://doi.org/10.1111/j.1460-9568.2009.06796.x
  60. Tulloch, I.F., Arbuthnott, G.W., and Wright, A.K. (1978). Topographical organization of the striatonigral pathway revealed by anterograde and retrograde neuroanatomical tracing techniques. J. Anat. 127, 425-441.
  61. Valjent, E. and Gangarossa, G. (2021). The tail of the striatum: from anatomy to connectivity and function. Trends Neurosci. 44, 203-214. https://doi.org/10.1016/j.tins.2020.10.016
  62. Vonsattel, J.P., Myers, R.H., Stevens, T.J., Ferrante, R.J., Bird, E.D., and Richardson, E.P. (1985). Neuropathological classification of Huntington's disease. J. Neuropathol. Exp. Neurol. 44, 559-577. https://doi.org/10.1097/00005072-198511000-00003
  63. Woolley, D.G., Laeremans, A., Gantois, I., Mantini, D., Vermaercke, B., Op De Beeck, H.P., Swinnen, S.P., Wenderoth, N., Arckens, L., and D'Hooge, R. (2013). Homologous involvement of striatum and prefrontal cortex in rodent and human water maze learning. Proc. Natl. Acad. Sci. U. S. A. 110, 3131-3136. https://doi.org/10.1073/pnas.1217832110
  64. Yamamoto, S., Kim, H.F., and Hikosaka, O. (2013). Reward value-contingent changes of visual responses in the primate caudate tail associated with a visuomotor skill. J. Neurosci. 33, 11227-11238. https://doi.org/10.1523/JNEUROSCI.0318-13.2013
  65. Yamamoto, S., Monosov, I.E., Yasuda, M., and Hikosaka, O. (2012). What and where information in the caudate tail guides saccades to visual objects. J. Neurosci. 32, 11005-11016. https://doi.org/10.1523/JNEUROSCI.0828-12.2012
  66. Yeterian, E.H. and Pandya, D.N. (1995). Corticostriatal connections of extrastriate visual areas in rhesus monkeys. J. Comp. Neurol. 352, 436-457. https://doi.org/10.1002/cne.903520309
  67. Yeterian, E.H. and Pandya, D.N. (1998). Corticostriatal connections of the superior temporal region in rhesus monkeys. J. Comp. Neurol. 399, 384-402. https://doi.org/10.1002/(SICI)1096-9861(19980928)399:3<384::AID-CNE7>3.0.CO;2-X
  68. Yin, H.H. and Knowlton, B.J. (2006). The role of the basal ganglia in habit formation. Nat. Rev. Neurosci. 7, 464-476. https://doi.org/10.1038/nrn1919
  69. Yin, H.H., Knowlton, B.J., and Balleine, B.W. (2005a). Blockade of NMDA receptors in the dorsomedial striatum prevents action-outcome learning in instrumental conditioning. Eur. J. Neurosci. 22, 505-512. https://doi.org/10.1111/j.1460-9568.2005.04219.x
  70. Yin, H.H., Ostlund, S.B., Knowlton, B.J., and Balleine, B.W. (2005b). The role of the dorsomedial striatum in instrumental conditioning. Eur. J. Neurosci. 22, 513-523. https://doi.org/10.1111/j.1460-9568.2005.04218.x
  71. Zhou, F.M. and Lee, C.R. (2011). Intrinsic and integrative properties of substantia nigra pars reticulata neurons. Neuroscience 198, 69-94. https://doi.org/10.1016/j.neuroscience.2011.07.061