References
- Ahmed, S.R. and Khanna, S. (2020), "Investigation into features of fracture toughness of a transparent Eglass fiber reinforced polyester composites at extreme temperatures", Heliyon, 6, e03986. https://doi.org/10.1016/j.heliyon.2020.e03986.
- Akaluzia, R.O., Edoziuno, F.O., Adediran, A.A., Odoni, B.U., Edibo, S. and Olayanju, T.M.A. (2020), "Evaluation of the effect of reinforcement particle sizes on the impact and hardness properties of hardwood charcoal particulate-polyester resin composites", Mater. Today Proc., 38, 570-577. https://doi.org/10.1016/j.matpr.2020.02.980.
- Awad, A.H., Abdel-Ghany, A.W., El-Wahab, A.A.A., El-Gamasy, R. and Abdellatif, M.H. (2020), "The influence of adding marble and granite dust on the mechanical and physical properties of PP composites", J. Therm. Anal. Calorim., 140, 2615-2623. https://doi.org/10.1007/s10973-019-09030-w.
- Awad, A.H. and Abdellatif, M.H. (2019), "Assessment of mechanical and physical properties of LDPE reinforced with marble dust", Compos. Part B Eng., 173, 106948. https://doi.org/10.1016/j.compositesb.2019.106948.
- Awad, A.H., El-gamasy, R.A., Abd El-Wahab, A. and Hazem Abdellatif, M. (2019), "Mechanical behavior of PP reinforced with marble dust", Constr. Build. Mater., 228, 116766. https://doi.org/10.1016/j.conbuildmat.2019.116766.
- Belytschko, T. and Black, T. (1999), "Elastic crack growth in finite elements with minimal remeshing", Int. J. Numer. Meth. Eng., 45, 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AIDNME598>3.0.CO;2-S.
- Benzannache, N., Bezazi, A., Bouchelaghem, H., Boumaaza, M., Amziane, S. and Scarpa, F. (2018), "Statistical analysis of 3-point bending properties of polymer concretes made from marble powder waste, sand grains, and polyester resin", Mech. Compos. Mater., 53, 781-790. https://doi.org/10.1007/s11029-018-9703-2.
- Bostanci, S.C. (2020), "Use of waste marble dust and recycled glass for sustainable concrete production", J. Clean. Prod., 251, 119785. https://doi.org/10.1016/j.jclepro.2019.119785.
- Boukhelf, F., Cherif, R., Trabelsi, A., Belarbi, R. and Bachir Bouiadjra, M. (2021), "On the hygrothermal behavior of concrete containing glass powder and silica fume", J. Clean. Prod., 318, 128647. https://doi.org/10.1016/j.jclepro.2021.128647.
- Chand, G., Happy, S.K. and Ram, S. (2021), "Assessment of the properties of sustainable concrete produced from quaternary blend of portland cement, glass powder, metakaolin and silica fume", Clean. Eng. Technol., 4, 100179. https://doi.org/10.1016/j.clet.2021.100179.
- Chaturvedi, A.K., Gupta, M.K. and Pappu, A. (2021), "The role of carbon nanotubes on flexural strength and dielectric properties of water sustainable fly ash polymer nanocomposites", Phys. B Condens. Matter., 620, 413283. https://doi.org/10.1016/j.physb.2021.413283.
- Chen, Y., Zhao, Y., Ai, S., He, C., Tao, Y., Yang, Y. and Fang, D. (2020), "A constitutive model for elastoplastic-damage coupling effect of unidirectional fiber-reinforced polymer matrix composites", Compos. Part Appl. Sci. Manuf., 130, 105736. https://doi.org/10.1016/j.compositesa.2019.105736.
- Choudhary, R., Gupta, R., Alomayri, T., Jain, A. and Nagar, R. (2021), "Permeation, corrosion, and drying shrinkage assessment of self-compacting high strength concrete comprising waste marble slurry and fly ash, with silica fume", Struct., 33, 971-985. https://doi.org/10.1016/j.istruc.2021.05.008.
- Cinar, M.E. and Kar, F. (2018), "Characterization of composite produced from waste PET and marble dust", Constr. Build. Mater., 163, 734-741. https://doi.org/10.1016/j.conbuildmat.2017.12.155.
- Daghash, S.M., Soliman, E.M., Kandil, U.F. and Reda Taha, M.M. (2016), "Improving impact resistance of polymer concrete using CNTs", Int. J. Concr. Struct. Mater., 10, 539-553. https://doi.org/10.1007/s40069-016-0165-4.
- Danish, A., Mosaberpanah, M.A., Salim, M.U., Fediuk, R., Rashid, M.F. and Waqas, R.M. (2021), "Reusing marble and granite dust as cement replacement in cementitious composites: A review on sustainability benefits and critical challenges", J. Build. Eng., 44, 102600. https://doi.org/10.1016/j.jobe.2021.102600.
- Das, S.K., Mustakim, S.M., Adesina, A., Mishra, J., Alomayri, T.S., Assaedi, H.S. and Kaze, C.R. (2020), "Fresh, strength and microstructure properties of geopolymer concrete incorporating lime and silica fume as replacement of fly ash", J. Build. Eng., 32, 101780. https://doi.org/10.1016/j.jobe.2020.101780.
- Debska, B., Licholai, L., Silva, G.J.B. and Altoe Caetano, M. (2020), "Assessment of the mechanical parameters of resin composites with the addition of various types of fibres", Mater., 13, 1378. https://doi.org/10.3390/ma13061378.
- El Alouani, M., Alehyen, S., El Hadki, H., Saufi, H., Elhalil, A., Kabbaj, O.K. and Taibi, M. (2021), "Synergetic influence between adsorption and photodegradation of Rhodamine B using synthesized fly ash based inorganic polymer", Surf. Interf., 24, 101136. https://doi.org/10.1016/j.surfin.2021.101136.
- Elalaoui, O., Ghorbel, E. and Ouezdou, M.B. (2018), "Influence of flame retardant addition on the durability of epoxy based polymer concrete after exposition to elevated temperature", Constr. Build. Mater., 192, 233-239. https://doi.org/10.1016/j.conbuildmat.2018.10.132.
- Gameiro, T., Novais, R.M., Correia, C.L., Carvalheiras, J., Seabra, M.P., Labrincha, J.A., Duarte, A.C. and Capela, I. (2020), "Red mud-based inorganic polymer spheres: Innovative and environmentally friendly anaerobic digestion enhancers", Bioresour. Technol., 316, 123904. https://doi.org/10.1016/j.biortech.2020.123904.
- Ince, C., Hamza, A., Derogar, S. and Ball, R.J. (2020), "Utilisation of waste marble dust for improved durability and cost efficiency of pozzolanic concrete", J. Clean. Prod., 270, 122213. https://doi.org/10.1016/j.jclepro.2020.122213.
- Karimi, M., Montazeri, A. and Ghajar, R. (2017), "On the elasto-plastic behavior of CNT-polymer nanocomposites", Compos. Struct., 160, 782-791. https://doi.org/10.1016/j.compstruct.2016.10.053.
- Kucukdogan, N., Aydin, L. and Sutcu, M. (2018), "Theoretical and empirical thermal conductivity models of red mud filled polymer composites", Thermochim. Acta, 665, 76-84. https://doi.org/10.1016/j.tca.2018.05.013.
- Li, M., Khelifa, M. and El Ganaoui, M. (2017), "Mechanical characterization of concrete containing wood shavings as aggregates", Int. J. Sustain. Built Environ., 6, 587-596. https://doi.org/10.1016/j.ijsbe.2017.12.005.
- Liu, C., Wang, X., Chen, Y., Zhang, C., Ma, L., Deng, Z., Chen, C., Zhang, Y., Pan, J. and Banthia, N. (2021), "Influence of hydroxypropyl methylcellulose and silica fume on stability, rheological properties, and printability of 3D printing foam concrete", Cement Concrete Compos., 122, 104158. https://doi.org/10.1016/j.cemconcomp.2021.104158.
- Lokuge, W. and Aravinthan, T. (2013), "Effect of fly ash on the behaviour of polymer concrete with different types of resin", Mater. Des., 51, 175-181. https://doi.org/10.1016/j.matdes.2013.03.078.
- Mansour, R., El Abidine, R.Z. and Brahim, B. (2017), "Performance of polymer concrete incorporating waste marble and alfa fibers", Adv. Concrete Constr., 5, 331. https://doi.org/10.12989/acc.2017.5.4.331.
- Mo, J., Ou, Z., Zhao, X., Liu, J. and Wang, Y. (2017), "Influence of superabsorbent polymer on shrinkage properties of reactive powder concrete blended with granulated blast furnace slag", Constr. Build. Mater., 146, 283-296. https://doi.org/10.1016/j.conbuildmat.2017.04.105.
- Nasier, S. (2021), "Utilization of recycled form of concrete, E-wastes, glass, quarry rock dust and waste marble powder as reliable construction materials", Mater. Today Proc., 45, 3231-3234. https://doi.org/10.1016/j.matpr.2020.12.381.
- Petrik, A. and A roch, R. (2019), "Usage of true stress-strain curve for FE simulation and the influencing parameters", IOP Conf. Ser. Mater. Sci. Eng., 566, 012025. https://doi.org/10.1088/1757-899X/566/1/012025.
- Pradeep, A.V. (2015), "Effect of blast furnace slag on mechanical properties of glass fiber polymer composites", Procedia Mater. Sci., 10, 230-237. https://doi.org/10.1016/j.mspro.2015.06.045.
- Raja, V.L. and Kumaravel, A. (2015), "Studies on physical and mechanical properties of silica fume-filled nylon 66 polymer composites for mechanical components", Polym. Polym. Compos., 23, 427-434. https://doi.org/10.1177/096739111502300608.
- Rokbi, M., Baali, B., Rahmouni, Z.E.A. and Latelli, H. (2019), "Mechanical properties of polymer concrete made with jute fabric and waste marble powder at various woven orientations", Int. J. Environ. Sci. Technol., 16, 5087-5094. https://doi.org/10.1007/s13762-019-02367-7.
- Shukla, A., Gupta, N. and Gupta, A. (2020), "Development of green concrete using waste marble dust", Mater. Today Proc., 26, 2590-2594. https://doi.org/10.1016/j.matpr.2020.02.548.
- Vandevenne, N., Iacobescu, R.I., Pontikes, Y., Carleer, R., Thijssen, E., Gijbels, K., Schreurs, S. and Schroeyers, W. (2018), "Incorporating Cs and Sr into blast furnace slag inorganic polymers and their effect on matrix properties", J. Nucl. Mater., 503, 1-12. https://doi.org/10.1016/j.jnucmat.2018.02.023.
- Wawrzenczyk, J., Molendowska, A. and Klak, A. (2016), "Effect of ground granulated blast furnace slag and polymer microspheres on impermeability and freeze-thaw resistance of concrete", Procedia Eng., 161, 79-84. https://doi.org/10.1016/j.proeng.2016.08.501.
- Yang, B.J., Hwang, Y.Y. and Lee, H.K. (2013), "Elastoplastic modeling of polymeric composites containing randomly located nanoparticles with an interface effect", Compos. Struct., 99, 123-130. https://doi.org/10.1016/j.compstruct.2012.11.043.
- Zhang, J., Huang, Y., Ma, G. and Nener, B. (2021), "Mixture optimization for environmental, economical and mechanical objectives in silica fume concrete: A novel frame-work based on machine learning and a new meta-heuristic algorithm", Resour. Conserv. Recycl., 167, 105395. https://doi.org/10.1016/j.resconrec.2021.105395.