DOI QR코드

DOI QR Code

Influence of Co incorporation on morphological, structural, and optical properties of ZnO nanorods synthesized by chemical bath deposition

  • Iwan Sugihartono (Program Studi Fisika, FMIPA Universitas Negeri Jakarta) ;
  • Novan Purwanto (Program Studi Fisika, FMIPA Universitas Negeri Jakarta) ;
  • Desy Mekarsari (Program Studi Fisika, FMIPA Universitas Negeri Jakarta) ;
  • Isnaeni (National Research and Innovation Agency, KST BJ Habibie) ;
  • Markus Diantoro (Department of Physics, State University of Malang) ;
  • Riser Fahdiran (Program Studi Fisika, FMIPA Universitas Negeri Jakarta) ;
  • Yoga Divayana (Department of Electrical Engineering, Udayana University, Kampus Bukit Jimbaran) ;
  • Anggara Budi Susila (Program Studi Fisika, FMIPA Universitas Negeri Jakarta)
  • Received : 2022.03.20
  • Accepted : 2023.03.14
  • Published : 2023.09.25

Abstract

We have studied the structural and optical properties of the non-doped and Co 0.08 at.%, Co 0.02 at.%, and Co 0.11 at.% doped ZnO nanorods (NRs) synthesized using the simple low-temperature chemical bath deposition (CBD) method at 95℃ for 2 hours. The scanning electron microscope (SEM) images confirmed the morphology of the ZnO NRs are affected by Co incorporation. As observed, the Co 0.08 at.% doped ZnO NRs have a larger dimension with an average diameter of 153.4 nm. According to the International Centre for Diffraction Data (ICDD) number #00-036-1451, the x-ray diffraction (XRD) pattern of non-doped and Co-doped ZnO NRs with the preferred orientation of ZnO NRs in the (002) plane possess polycrystalline hexagonal wurtzite structure with the space group P63mc. Optical absorbance indicates the Co 0.08 at.% doped ZnO NRs have stronger and blueshift bandgap energy (3.104 ev). The room temperature photoluminescence (PL) spectra of ZnO NRs exhibited excitonicrelates ultraviolet (UV) and defect-related green band (GB) emissions. By calculating the UV/GB intensity, the Co 0.08 at.% is the proper atomic percentage to have fewer intrinsic defects. We predict that Co-doped ZnO NRs induce a blueshift of near band edge (NBE) emission due to the Burstein-Moss effect. Meanwhile, the redshift of NBE emission is attributed to the modification of the lattice dimensions and exchange energy.

Keywords

Acknowledgement

I would like to thank the support from Universitas Negeri Jakarta and the Direktorat Sumber Daya, Direktorat Jenderal Pendidikan Tinggi, Kementerian Pendidikan dan Kebudayaan, Riset dan Teknologi through Hibah Penelitian Dasar Unggulan Perguruan Tinggi No. 1/E4.1/DSD/LPPM/2021 is gratefully acknowledged.

References

  1. Allahverdinejad Sarab, V. and Movlarooy, T. (2022), "Structural and electronic properties of double-walled zigzag and armchair Zinc oxide nanotubes", Chin. J. Phys., 83, 571-578. https://doi.org/10.1016/j.cjph.2022.08.004.
  2. Chen, Z., Fang, Y., Wang, L., Chen, X., Lin, W. and Wang, X. (2021), "Remarkable oxygen evolution by Co-doped ZnO nanorods and visible light", Appl. Catal. B: Environ., 296, 120369. https://doi.org/10.1016/j.apcatb.2021.120369.
  3. Demircan, G., Acikgoz, A., Yalcin, S., Aytar, E., Balak, M.V. and Aktas, B. (2023), "the influence of doping perimidine ruthenium complexes on structural, optic, and residual stress properties of ZnO thin films", Brazil. J. Phys., 53, 1-11. https://doi.org/10.1007/s13538-022-01245-x.
  4. Demircan, G., Gurses, E.F., Aktas, B., Yalcin, S., Acikgoz, A., Aytar, E., Ceyhan, G. and Aktas, B. (2023), "Sol-gel synthesis of Si-ZnO, Ti-ZnO and Si-Ti-ZnO thin films: Impact of Si and Ti content on structural and optical properties", Mater. Today Commun., 34, 105234. https://doi.org/10.1016/j.mtcomm.2022.105234.
  5. Demircan, G., Yalcin, S., Alivi, K., Ceyhan, G., Acikgoz, A., Balak, M.V., Aktas, B. and Das, R. (2022), "The effect of Co and Mn Co-Doping on structural and optical properties of ZnO thin films", Opt. Mater., 126, 112163. https://doi.org/10.1016/j.optmat.2022.112163.
  6. Dorneanu, P.P., Tudose, I.V., Suchea, M., Koudoumas, E., Fifere, N. and Airinei, A. (2018), "Preparation and characterization of Ni, Co doped ZnO nanoparticles for photocatalytic applications", Appl. Surf. Sci., 448, 481-488. https://doi.org/10.1016/j.apsusc.2018.04.124.
  7. Febrianti, Y., Putri, N.A., Sugihartono, I., Fauzia, V. and Handoko, D. (2017), "Synthesis and characterization of Co-doped zinc oxide nanorods prepared by ultrasonic spray pyrolysis and hydrothermal methods", AIP Conf. Proc., 1862(1), 030056. https://doi.org/10.1063/1.4991160.
  8. Ghazari, N., Kompany, A., Movlarooy, T., Roozban, F. and Majidiyan, M. (2013), "Synthesis, experimental and theoretical investigations of Zn 1-xCu xO nanopowders", J. Magnet. Magnetic Mater., 325, 42-46. http://doi.org/10.1016/j.jmmm.2012.08.008.
  9. Godavarti, U., Mote, V.D., Reddy, M.R., Nagaraju, P., Kumar, Y.V., Dasari, K.T. and Dasari, M.P. (2019), "Precipitated cobalt doped ZnO nanoparticles with enhanced low temperature xylene sensing properties", Physica B: Condens. Matt., 553, 151-160. https://doi.org/10.1016/j.physb.2018.10.034.
  10. Iwan, S., Dianisya, D., Fahdiran, R., Budi, E., Susila, A.B. and Handoko, E. (2019), "Morphological, structural, and optical properties of Co-doped ZnO NPs prepared by precipitation method", J. Ceram. Proc. Res., 20(5), 518-521. https://doi.org/10.36410/jcpr.2019.20.5.518.
  11. Iwan, S., Zhao, J.L., Tan, S.T., Bambang, S., Hikam, M., Fan, H.M. and Sun, X.W. (2015), "Ion-dependent electroluminescence from trivalent rare-earth doped n-ZnO/p-Si heterostructured light-emitting diodes", Mater. Sci. Semicond. Proc., 30, 263-266. https://doi.org/10.1016/j.mssp.2014.09.048.
  12. Jin, C., Yuan, X., Ge, W., Hong, J. and Xin, X. (2003), "Synthesis of ZnO nanorods by solid state reaction at room temperature", Nanotechnol., 14(6), 667-669. https://doi.org/10.1088/0957-4484/14/6/319.
  13. Lehru, R., Radhanpura, J., Kumar, R., Zala, D., Vadgama, V.S., Dadhich, H., ... & Solanki, P.S. (2021), "Studies on electrical properties of Fe doped ZnO nanostructured oxides synthesized by sol-gel method", Solid State Commun., 336, 114415. https://doi.org/10.1016/j.ssc.2021.114415.
  14. Lima, S.A.M., Sigoli, F.A., Miguel, J. and Davolos, M. (2001), "Luminescent properties and lattice defects correlation on zinc oxide", Int. J. Inorgan. Mater., 3(7), 749-754. https://doi.org/10.1016/S1466-6049(01)00055-1.
  15. Lu, Y., Yanhong, L., Wang, D., Wang, L., Xie, T. and Jiang, T. (2011), "A high performance cobalt-doped ZnO visible light photocatalyst and its photogenerated charge transfer properties", Nano Res., 4(11), 1144-1152. https://doi.org/10.1007/s12274-011-0163-4.
  16. Majeed-Khan, M., Wasi-Khan, M., Alhoshan, M., AlSalhi, M. and Aldwayyan A. (2010), "Influences of Co doping on the structural and optical properties of ZnO nanostructured", Appl. Phys. A, 100(1), 45-51. https://doi.org/10.1007/s00339-010-5840-8.
  17. Ming-Dong, W., Dao-Yun, Z., Yi, L., Lin, Z., Chang-Xi, Z., Zhen-Hui, H., ... & Li-Shi, W. (2008), "Determination of thickness and optical constants of ZnO thin films prepared by filtered cathode vacuum arc deposition", Chin. Phys. Lett., 25(2), 743-746. https://doi.org/10.1088/0256-307X/25/2/106.
  18. Mohar, R.S., Sugihartono, I., Fauzia, V. and Umar, A. (2020), "Dependence of optical properties of Mgdoped ZnO nanorods on Al dopant", Surf. Interf., 19, 100518. https://doi.org/10.1016/j.surfin.2020.100518.
  19. Movlarooy, T. (2017), "Transition metals doped and encapsulated ZnO nanotubes: Good materials for the spintronic applications", J. Magnet. Magnetic Mater., 441, 139-148. https://doi.org/10.1016/j.jmmm.2017.05.055.
  20. Movlarooy, T. (2018), "Study of quantum confinement effects in ZnO nanostructures", Mater. Res. Expr., 5, 035032. https://doi.org/10.1088/2053-1591/aab389
  21. Pushpa, N. and Kokila, M. (2017), "Effect of cobalt doping on structural, thermo and photoluminescent properties of ZnO nanopowders", J. Lumines., 190, 100-107. https://doi.org/10.1016/j.jlumin.2017.05.032.
  22. Putri, N.A., Fauzia, V., Sugihartono, I., Roza, L., Umar, A. and Budi, S. (2018), "Mn-doping-induced photocatalytic activity enhancement of ZnO nanorods prepared on glass substrates", Appl. Surf. Sci., 439, 285-297. https://doi.org/10.1016/j.apsusc.2017.12.246.
  23. Qiu, X., Li, L. and Li, G. (2006), "Nature of the abnormal band gap narrowing in highly crystalline Zn1-xCoxO nanorods", Appl. Phys. Lett., 88(11), 114103. https://doi.org/10.1063/1.2185617.
  24. Roza, L., Febrianti, Y., Sugihartono, I. and Fauzia, V. (2020), "The role of cobalt doping on the photocatalytic activity enhancement of ZnO nanorods under UV light irradiation", Surf. Interf., 18, 100435. https://doi.org/10.1016/j.surfin.2020.100435.
  25. Shindu, H.S., Kulkarni, S.D., Choudhary, R.J., Babu, P.D. and Rajendra, B.V. (2019), "Influence of cobalt doping on structure, optical and magnetic properties of spray pyrolysed nano structured ZnO films", Physica B: Condens. Matter., 572, 18-26. https://doi.org/10.1016/j.physb.2019.07.034.
  26. Song, J. and Lim, S. (2006), "Effect of seed layer on the growth of ZnO nanorods", J. Phys. Chem. C, 111(2), 596-600. https://doi.org/10.1021/jp0655017.
  27. Sugihartono, I., Fauzia, V., Azeti, R.A., Maharani, M., Fahdiran, R. and Budi, E. (2019), "Morphology and optical properties of Cu-Al co-doped ZnO nanostructures", Surf. Interf., 16, 147-151. https://doi.org/10.1016/j.surfin.2019.05.009.
  28. Sugihartono, I., Fauzia, V., Umar, A. and Sun, X. (2016), "Room temperature photoluminescence properties of ZnO nanorods grown by hydrothermal reaction", AIP Conf. Proc., 1729, 020031. https://doi.org/10.1063/1.4946934.
  29. Sugihartono, I., Soegijono, B., Zhao, J.L., Tan, S.T., Fan, H.M., Sun, L., et al. (2012), "Green electroluminescence from an n-ZnO: Er/p-Si heterostructured light-emitting diode", Physica B: Condens. Matt., 407(14), 2721-2724. https://doi.org/10.1016/j.physb.2012.03.072.
  30. Sugihartono, I., Zhao, J.L., Tan, S.T. and Sun, X. (2018), "Enhancement of UV photoluminescence in ZnO tubes grown by metal organic chemical vapour deposition (MOCVD)", Vacuum, 155, 408-411. https://doi.org/10.1016/j.vacuum.2018.06.035.
  31. Sutka, A., Kaambre, T., Parna, R., Juhnevica, I., Maiorov, M., Joost, U. and Kisand, V. (2016), "Co doped ZnO nanowires as visible light photocatalysts", Solid State Sci., 56, 54-62. https://doi.org/10.1016/j.solidstatesciences.2016.04.008.
  32. Suwanboon, S., Amornpitoksuk, P. and Sukolrat, A. (2011), "Dependence of optical properties on doping metal, crystallite size and defect concentration of M-doped ZnO nanopowders (M=Al, Mg, Ti)", Ceram. Int., 37(4), 1359-1365. https://doi.org/10.1016/j.ceramint.2010.12.010.
  33. Ta, Q.T.H., Namgung, G. and Noh, J.S. (2018), "Morphological evolution of solution-grown cobalt-doped ZnO nanostructures and their properties", Chem. Phys. Lett., 700, 1-6. https://doi.org/10.1016/j.cplett.2018.04.002.
  34. Tan, S.T., Chen, B.J., Sun, X., Hu, X., Zhang, X. and Chua, S. (2005), "Properties of polycrystalline ZnO thin films by metal organic chemical vapor deposition", J. Crystal Growth., 281(2-4), 571-576. https://doi.org/10.1016/j.jcrysgro.2005.04.093.
  35. Tan, S.T., Chen, B.J., Sun, X.W., Fan, W.J., Kwok, H.S., Zhang, X.H. and Chua, S.J. (2005), "Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition", J. Appl. Phys., 98(1), 013505. https://doi.org/10.1063/1.1940137.
  36. Tan, S.T., Sun, X.W., Zhang, X.H., Chua, S.J., Chen, B.J. and Teo, C.C. (2006), "Cluster coarsening in zinc oxide thin films by postgrowth annealing", J. Appl. Phys., 100(3), 033502. https://doi.org/10.1063/1.2218468.
  37. Toufiq, A.M., Hussain, R., Shah, A., Mahmood, A., Rehman, A., Khan, A. and ur Rahman, S. (2021), "The influence of Mn doping on the structural and optical properties of ZnO nanostructures", Physica B: Condens. Matt., 604, 412731. https://doi.org/10.1016/j.physb.2020.412731.
  38. Vempati, S., Shetty, A., Dawson, P., Nanda, K. and Krupanidhi, S. (2012), "Solution-based synthesis of cobalt-doped ZnO thin films", Thin Solid Film., 524, 137-143. https://doi.org/10.1016/j.tsf.2012.10.008.
  39. Viezbicke, B., Patel, S., Davis, B. and Birnie, D. (2015), "Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system", Physica Status Solidi (b), 252(8), 1700-1710. https://doi.org/10.1002/pssb.201552007.
  40. Xu, C., Cao, L., Su, G., Liu, W., Qu, X. and Yu, Y. (2010), "Preparation, characterization and photocatalytic activity of Co-doped ZnO powders", J. Alloy. Compound., 497(1-2), 373-376. https://doi.org/10.1016/j.jallcom.2010.03.076.
  41. Yang, Y.H., Chen, X.Y., Feng, Y. and Yang, G. (2007), "Physical mechanism of blue-shift of UV luminescence of a single pencil-like ZnO nanowire", Nano Lett., 7(12), 3879-3883. https://doi.org/10.1021/nl071849h.
  42. Yu, H., Li, J., Loomis, R.A., Gibbons, P., Wang-wang, L. and Buhro, W. (2003), "Cadmium selenide quantum wires and the transition from 3d to 2d Confinement", J. Am. Chem. Soc., 125(52), 16168-16169. https://doi.org/10.1021/ja037971.