DOI QR코드

DOI QR Code

Molecular Basis of Hexanoic Acid Taste in Drosophila melanogaster

  • Roshani Nhuchhen Pradhan (Department of Bio & Fermentation Convergence Technology, Kookmin University) ;
  • Bhanu Shrestha (Department of Bio & Fermentation Convergence Technology, Kookmin University) ;
  • Youngseok Lee (Department of Bio & Fermentation Convergence Technology, Kookmin University)
  • 투고 : 2023.02.24
  • 심사 : 2023.04.10
  • 발행 : 2023.07.31

초록

Animals generally prefer nutrients and avoid toxic and harmful chemicals. Recent behavioral and physiological studies have identified that sweet-sensing gustatory receptor neurons (GRNs) in Drosophila melanogaster mediate appetitive behaviors toward fatty acids. Sweet-sensing GRN activation requires the function of the ionotropic receptors IR25a, IR56d, and IR76b, as well as the gustatory receptor GR64e. However, we reveal that hexanoic acid (HA) is toxic rather than nutritious to D. melanogaster. HA is one of the major components of the fruit Morinda citrifolia (noni). Thus, we analyzed the gustatory responses to one of major noni fatty acids, HA, via electrophysiology and proboscis extension response (PER) assay. Electrophysiological tests show this is reminiscent of arginine-mediated neuronal responses. Here, we determined that a low concentration of HA induced attraction, which was mediated by sweet-sensing GRNs, and a high concentration of HA induced aversion, which was mediated by bitter-sensing GRNs. We also demonstrated that a low concentration of HA elicits attraction mainly mediated by GR64d and IR56d expressed by sweet-sensing GRNs, but a high concentration of HA activates three gustatory receptors (GR32a, GR33a, and GR66a) expressed by bitter-sensing GRNs. The mechanism of sensing HA is biphasic in a dose dependent manner. Furthermore, HA inhibit sugar-mediated activation like other bitter compounds. Taken together, we discovered a binary HA-sensing mechanism that may be evolutionarily meaningful in the foraging niche of insects.

키워드

과제정보

We thank Dr. Craig Montell, Dr. Seok Jun Moon, Dr. Hubert Amrein, Dr. Leslie B. Vosshall, Dr. Anupama Dahanukar, Dr. John Carlson, and Dr. Richard Benton for kindly providing fly reagents. This work was supported by grants to Dr. Y.L. from the National Research Foundation of Korea (NRF) funded by the Korean government (MIST) (NRF-2021R1A2C1007628); and by the Korea Environmental Industry and Technology Institute (KEITI) grant funded by the Ministry of Environment of Korea. R.N.P. and B.S. were supported by the Global Scholarship Program for Foreign Graduate Students at Kookmin University in Korea.

참고문헌

  1. Ahn, J.E., Chen, Y., and Amrein, H. (2017). Molecular basis of fatty acid taste in Drosophila. Elife 6, e30115.
  2. Al-Anzi, B., Tracey, W.D., Jr., and Benzer, S. (2006). Response of Drosophila to wasabi is mediated by painless, the fly homolog of mammalian TRPA1/ ANKTM1. Curr. Biol. 16, 1034-1040. https://doi.org/10.1016/j.cub.2006.04.002
  3. Aryal, B., Dhakal, S., Shrestha, B., and Lee, Y. (2022a). Molecular and neuronal mechanisms for amino acid taste perception in the Drosophila labellum. Curr. Biol. 32, 1376-1386.e4. https://doi.org/10.1016/j.cub.2022.01.060
  4. Aryal, B., Dhakal, S., Shrestha, B., Sang, J., Pradhan, R.N., and Lee, Y. (2022b). Protocol for binary food choice assays using Drosophila melanogaster. STAR Protoc. 3, 101410.
  5. Aryal, B. and Lee, Y. (2021). Histamine gustatory aversion in Drosophila melanogaster. Insect Biochem. Mol. Biol. 134, 103586.
  6. Aryal, B. and Lee, Y. (2022). Histamine avoidance through three gustatory receptors in Drosophila melanogaster. Insect Biochem. Mol. Biol. 144, 103760.
  7. Brown, E.B., Shah, K.D., Palermo, J., Dey, M., Dahanukar, A., and Keene, A.C. (2021). Ir56d-dependent fatty acid responses in Drosophila uncover taste discrimination between different classes of fatty acids. Elife 10, e67878.
  8. Cameron, P., Hiroi, M., Ngai, J., and Scott, K. (2010). The molecular basis for water taste in Drosophila. Nature 465, 91-95. https://doi.org/10.1038/nature09011
  9. Chauhan, A.K. and Varma, A. (2009). A Textbook of Molecular Biotechnology (New Delhi: I.K. International Pvt. Ltd.).
  10. Chu, B., Chui, V., Mann, K., and Gordon, M.D. (2014). Presynaptic gain control drives sweet and bitter taste integration in Drosophila. Curr. Biol. 24, 1978-1984. https://doi.org/10.1016/j.cub.2014.07.020
  11. Dahanukar, A., Lei, Y.T., Kwon, J.Y., and Carlson, J.R. (2007). Two Gr genes underlie sugar reception in Drosophila. Neuron 56, 503-516. https://doi.org/10.1016/j.neuron.2007.10.024
  12. Dhakal, S., Sang, J., Aryal, B., and Lee, Y. (2021). Ionotropic receptors mediate nitrogenous waste avoidance in Drosophila melanogaster. Commun. Biol. 4, 1281.
  13. Dweck, H.K. and Carlson, J.R. (2020). Molecular logic and evolution of bitter taste in Drosophila. Curr. Biol. 30, 17-30.e3. https://doi.org/10.1016/j.cub.2019.11.005
  14. French, A.S., Sellier, M.J., Agha, M.A., Guigue, A., Chabaud, M.A., Reeb, P.D., Mitra, A., Grau, Y., Soustelle, L., and Marion-Poll, F. (2015). Dual mechanism for bitter avoidance in Drosophila. J. Neurosci. 35, 3990-4004. https://doi.org/10.1523/JNEUROSCI.1312-14.2015
  15. Ganguly, A., Chandel, A., Turner, H., Wang, S., Liman, E.R., and Montell, C. (2021). Requirement for an Otopetrin-Like protein for acid taste in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 118, e2110641118.
  16. Ganguly, A., Pang, L., Duong, V.K., Lee, A., Schoniger, H., Varady, E., and Dahanukar, A. (2017). A molecular and cellular context-dependent role for Ir76b in detection of amino acid taste. Cell Rep. 18, 737-750. https://doi.org/10.1016/j.celrep.2016.12.071
  17. Jeong, Y.T., Shim, J., Oh, S.R., Yoon, H.I., Kim, C.H., Moon, S.J., and Montell, C. (2013). An odorant-binding protein required for suppression of sweet taste by bitter chemicals. Neuron 79, 725-737. https://doi.org/10.1016/j.neuron.2013.06.025
  18. Kang, K., Pulver, S.R., Panzano, V.C., Chang, E.C., Griffith, L.C., Theobald, D.L., and Garrity, P.A. (2010). Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature 464, 597-600. https://doi.org/10.1038/nature08848
  19. Kim, H., Kim, H., Kwon, J.Y., Seo, J.T., Shin, D.M., and Moon, S.J. (2018). Drosophila Gr64e mediates fatty acid sensing via the phospholipase C pathway. PLoS Genet. 14, e1007229.
  20. Kim, S.H., Lee, Y., Akitake, B., Woodward, O.M., Guggino, W.B., and Montell, C. (2010). Drosophila TRPA1 channel mediates chemical avoidance in gustatory receptor neurons. Proc. Natl. Acad. Sci. U. S. A. 107, 8440-8445. https://doi.org/10.1073/pnas.1001425107
  21. Lee, Y., Kang, M.J., Shim, J., Cheong, C.U., Moon, S.J., and Montell, C. (2012). Gustatory receptors required for avoiding the insecticide L-canavanine. J. Neurosci. 32, 1429-1435. https://doi.org/10.1523/JNEUROSCI.4630-11.2012
  22. Lee, Y., Kim, S.H., and Montell, C. (2010). Avoiding DEET through insect gustatory receptors. Neuron 67, 555-561. https://doi.org/10.1016/j.neuron.2010.07.006
  23. Lee, Y., Moon, S.J., and Montell, C. (2009). Multiple gustatory receptors required for the caffeine response in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 106, 4495-4500. https://doi.org/10.1073/pnas.0811744106
  24. Lee, Y., Moon, S.J., Wang, Y., and Montell, C. (2015). A Drosophila gustatory receptor required for strychnine sensation. Chem. Senses 40, 525-533. https://doi.org/10.1093/chemse/bjv038
  25. Lee, Y., Poudel, S., Kim, Y., Thakur, D., and Montell, C. (2018). Calcium taste avoidance in Drosophila. Neuron 97, 67-74.e4. https://doi.org/10.1016/j.neuron.2017.11.038
  26. Leung, N.Y., Thakur, D.P., Gurav, A.S., Kim, S.H., Di Pizio, A., Niv, M.Y., and Montell, C. (2020). Functions of opsins in Drosophila taste. Curr. Biol. 30, 1367-1379.e6. https://doi.org/10.1016/j.cub.2020.01.068
  27. Masek, P. and Keene, A.C. (2013). Drosophila fatty acid taste signals through the PLC pathway in sugar-sensing neurons. PLoS Genet. 9, e1003710.
  28. McDowell, S.A., Stanley, M., and Gordon, M.D. (2022). A molecular mechanism for high salt taste in Drosophila. Curr. Biol. 32, 3070-3081.e5. https://doi.org/10.1016/j.cub.2022.06.012
  29. Mi, T., Mack, J.O., Lee, C.M., and Zhang, Y.V. (2021). Molecular and cellular basis of acid taste sensation in Drosophila. Nat. Commun. 12, 3730.
  30. Moon, S.J., Kottgen, M., Jiao, Y., Xu, H., and Montell, C. (2006). A taste receptor required for the caffeine response in vivo. Curr. Biol. 16, 1812-1817. https://doi.org/10.1016/j.cub.2006.07.024
  31. Moon, S.J., Lee, Y., Jiao, Y., and Montell, C. (2009). A Drosophila gustatory receptor essential for aversive taste and inhibiting male-to-male courtship. Curr. Biol. 19, 1623-1627. https://doi.org/10.1016/j.cub.2009.07.061
  32. Poudel, S. and Lee, Y. (2016). Gustatory receptors required for avoiding the toxic compound coumarin in Drosophila melanogaster. Mol. Cells 39, 310-315. https://doi.org/10.14348/molcells.2016.2250
  33. Prieto-Godino, L.L., Rytz, R., Cruchet, S., Bargeton, B., Abuin, L., Silbering, A.F., Ruta, V., Dal Peraro, M., and Benton, R. (2017). Evolution of acidsensing olfactory circuits in drosophilids. Neuron 93, 661-676.e6. https://doi.org/10.1016/j.neuron.2016.12.024
  34. Puri, S. and Lee, Y. (2021). Salt sensation and regulation. Metabolites 11, 175.
  35. Rimal, S. and Lee, Y. (2019). Molecular sensor of nicotine in taste of Drosophila melanogaster. Insect Biochem. Mol. Biol. 111, 103178.
  36. Rimal, S., Sang, J., Dhakal, S., and Lee, Y. (2020). Cucurbitacin B activates bitter-sensing gustatory receptor neurons via gustatory receptor 33a in Drosophila melanogaster. Mol. Cells 43, 530-538.
  37. Rimal, S., Sang, J., Poudel, S., Thakur, D., Montell, C., and Lee, Y. (2019). Mechanism of acetic acid gustatory repulsion in Drosophila. Cell Rep. 26, 1432-1442.e4. https://doi.org/10.1016/j.celrep.2019.01.042
  38. Sanchez-Alcaniz, J.A., Silbering, A.F., Croset, V., Zappia, G., Sivasubramaniam, A.K., Abuin, L., Sahai, S.Y., Munch, D., Steck, K., Auer, T.O., et al. (2018). An expression atlas of variant ionotropic glutamate receptors identifies a molecular basis of carbonation sensing. Nat. Commun. 9, 4252.
  39. Sang, J., Dhakal, S., and Lee, Y. (2021). Cucurbitacin B suppresses hyperglycemia associated with a high sugar diet and promotes sleep in Drosophila melanogaster. Mol. Cells 44, 68-78. https://doi.org/10.14348/molcells.2021.2245
  40. Sang, J., Rimal, S., and Lee, Y. (2019). Gustatory receptor 28b is necessary for avoiding saponin in Drosophila melanogaster. EMBO Rep. 20, e47328.
  41. Shim, J., Lee, Y., Jeong, Y.T., Kim, Y., Lee, M.G., Montell, C., and Moon, S.J. (2015). The full repertoire of Drosophila gustatory receptors for detecting an aversive compound. Nat. Commun. 6, 8867.
  42. Shrestha, B. and Lee, Y. (2021a). Mechanisms of carboxylic acid attraction in Drosophila melanogaster. Mol. Cells 44, 900-910. https://doi.org/10.14348/molcells.2021.0205
  43. Shrestha, B. and Lee, Y. (2021b). Mechanisms of DEET gustation in Drosophila. Insect Biochem. Mol. Biol. 131, 103550.
  44. Shrestha, B. and Lee, Y. (2023). Molecular sensors in the taste system of Drosophila. Genes Genomics 2023 Feb 24 [Epub]. https://doi.org/10.1007/s13258-023-01370-0
  45. Shrestha, B., Aryal, B., and Lee, Y. (2023). The taste of vitamin C in Drosophila. EMBO Rep. 2023 Apr 28 [Epub]. https://doi.org/10.15252/embr.202256319
  46. Shrestha, B., Nhuchhen Pradhan, R., Nath, D.K., and Lee, Y. (2022). Cellular and molecular basis of IR3535 perception in Drosophila. Pest Manag. Sci. 78, 793-802. https://doi.org/10.1002/ps.6693
  47. Stanley, M., Ghosh, B., Weiss, Z.F., Christiaanse, J., and Gordon, M.D. (2021). Mechanisms of lactic acid gustatory attraction in Drosophila. Curr. Biol. 31, 3525-3537.e6. https://doi.org/10.1016/j.cub.2021.06.005
  48. Thistle, R., Cameron, P., Ghorayshi, A., Dennison, L., and Scott, K. (2012). Contact chemoreceptors mediate male-male repulsion and male-female attraction during Drosophila courtship. Cell 149, 1140-1151. https://doi.org/10.1016/j.cell.2012.03.045
  49. Thorne, N., Chromey, C., Bray, S., and Amrein, H. (2004). Taste perception and coding in Drosophila. Curr. Biol. 14, 1065-1079. https://doi.org/10.1016/j.cub.2004.05.019
  50. Tu, Y.H., Cooper, A.J., Teng, B., Chang, R.B., Artiga, D.J., Turner, H.N., Mulhall, E.M., Ye, W., Smith, A.D., and Liman, E.R. (2018). An evolutionarily conserved gene family encodes proton-selective ion channels. Science 359, 1047-1050. https://doi.org/10.1126/science.aao3264
  51. Zhang, Y.V., Ni, J., and Montell, C. (2013a). The molecular basis for attractive salt-taste coding in Drosophila. Science 340, 1334-1338. https://doi.org/10.1126/science.1234133
  52. Zhang, Y.V., Raghuwanshi, R.P., Shen, W.L., and Montell, C. (2013b). Food experience-induced taste desensitization modulated by the Drosophila TRPL channel. Nat. Neurosci. 16, 1468-1476.  https://doi.org/10.1038/nn.3513