DOI QR코드

DOI QR Code

Wnt/β-Catenin Signaling Pathway Is Necessary for the Specification but Not the Maintenance of the Mouse Retinal Pigment Epithelium

  • Jong-Myeong Kim (Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kwang Wook Min (Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • You-Joung Kim (Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Ron Smits (Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center) ;
  • Konrad Basler (Department of Molecular Life Sciences, University of Zurich) ;
  • Jin Woo Kim (Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2023.02.06
  • Accepted : 2023.03.19
  • Published : 2023.07.31

Abstract

β-Catenin (Ctnnb1) has been shown to play critical roles in the development and maintenance of epithelial cells, including the retinal pigment epithelium (RPE). Ctnnb1 is not only a component of intercellular junctions in the epithelium, it also functions as a transcriptional regulator in the Wnt signaling pathway. To identify which of its functional modalities is critically involved in mouse RPE development and maintenance, we varied Ctnnb1 gene content and activity in mouse RPE lineage cells and tested their impacts on mouse eye development. We found that a Ctnnb1 double mutant (Ctnnb1dm), which exhibits impaired transcriptional activity, could not replace Ctnnb1 in the RPE, whereas Ctnnb1Y654E, which has reduced affinity for the junctions, could do so. Expression of the constitutively active Ctnnb1∆ex3 mutant also suppressed the development of RPE, instead facilitating a ciliary cell fate. However, the post-mitotic or mature RPE was insensitive to the loss, inactivation, or constitutive activation of Ctnnb1. Collectively, our results suggest that Ctnnb1 should be maintained within an optimal range to specify RPE through transcriptional regulation of Wnt target genes in the optic neuroepithelium.

Keywords

Acknowledgement

This work was supported by National Research Foundation of Korea (NRF) grants (NRF-2022R1A2C3003589; NRF-2018R1A5A1024261) funded by Korean Ministry of Science and ICT (MSIT) and the International Collaboration Initiative grant (KAIST-N11210255) supported by KAIST, South Korea.

References

  1. Ahmado, A., Carr, A.J., Vugler, A.A., Semo, M., Gias, C., Lawrence, J.M., Chen, L.L., Chen, F.K., Turowski, P., da Cruz, L., et al. (2011). Induction of differentiation by pyruvate and DMEM in the human retinal pigment epithelium cell line ARPE-19. Invest. Ophthalmol. Vis. Sci. 52, 7148-7159. https://doi.org/10.1167/iovs.10-6374
  2. Aydin, I.T. and Beermann, F. (2011). A mart-1::Cre transgenic line induces recombination in melanocytes and retinal pigment epithelium. Genesis 49, 403-409. https://doi.org/10.1002/dvg.20725
  3. Balasubramanian, R., Min, X., Quinn, P.M.J., Giudice, Q.L., Tao, C., Polanco, K., Makrides, N., Peregrin, J., Bouaziz, M., Mao, Y., et al. (2021). Phase transition specified by a binary code patterns the vertebrate eye cup. Sci. Adv. 7, eabj9846.
  4. Brault, V., Moore, R., Kutsch, S., Ishibashi, M., Rowitch, D.H., McMahon, A.P., Sommer, L., Boussadia, O., and Kemler, R. (2001). Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 128, 1253-1264. https://doi.org/10.1242/dev.128.8.1253
  5. Capowski, E.E., Wright, L.S., Liang, K., Phillips, M.J., Wallace, K., Petelinsek, A., Hagstrom, A., Pinilla, I., Borys, K., Lien, J., et al. (2016). Regulation of WNT signaling by VSX2 during optic vesicle patterning in human induced pluripotent stem cells. Stem Cells 34, 2625-2634. https://doi.org/10.1002/stem.2414
  6. Cardozo, M.J., Almuedo-Castillo, M., and Bovolenta, P. (2020). Patterning the vertebrate retina with morphogenetic signaling pathways. Neuroscientist 26, 185-196. https://doi.org/10.1177/1073858419874016
  7. Cho, S.H. and Cepko, C.L. (2006). Wnt2b/beta-catenin-mediated canonical Wnt signaling determines the peripheral fates of the chick eye. Development 133, 3167-3177. https://doi.org/10.1242/dev.02474
  8. Chow, R.L. and Lang, R.A. (2001). Early eye development in vertebrates. Annu. Rev. Cell Dev. Biol. 17, 255-296. https://doi.org/10.1146/annurev.cellbio.17.1.255
  9. Daugherty, R.L. and Gottardi, C.J. (2007). Phospho-regulation of Beta-catenin adhesion and signaling functions. Physiology (Bethesda) 22, 303-309.
  10. Esteve, P., Sandonis, A., Ibanez, C., Shimono, A., Guerrero, I., and Bovolenta, P. (2011). Secreted frizzled-related proteins are required for Wnt/beta-catenin signalling activation in the vertebrate optic cup. Development 138, 4179-4184. https://doi.org/10.1242/dev.065839
  11. Fotaki, V., Smith, R., Pratt, T., and Price, D.J. (2013). Foxg1 is required to limit the formation of ciliary margin tissue and Wnt/beta-catenin signalling in the developing nasal retina of the mouse. Dev. Biol. 380, 299-313. https://doi.org/10.1016/j.ydbio.2013.04.017
  12. Fuhrmann, S. (2008). Wnt signaling in eye organogenesis. Organogenesis 4, 60-67. https://doi.org/10.4161/org.4.2.5850
  13. Fujimura, N., Taketo, M.M., Mori, M., Korinek, V., and Kozmik, Z. (2009). Spatial and temporal regulation of Wnt/beta-catenin signaling is essential for development of the retinal pigment epithelium. Dev. Biol. 334, 31-45. https://doi.org/10.1016/j.ydbio.2009.07.002
  14. Gumbiner, B.M. (2005). Regulation of cadherin-mediated adhesion in morphogenesis. Nat. Rev. Mol. Cell Biol. 6, 622-634. https://doi.org/10.1038/nrm1699
  15. Hagglund, A.C., Berghard, A., and Carlsson, L. (2013). Canonical Wnt/beta-catenin signalling is essential for optic cup formation. PLoS One 8, e81158.
  16. Han, J.W., Lyu, J., Park, Y.J., Jang, S.Y., and Park, T.K. (2015). Wnt/beta-catenin signaling mediates regeneration of retinal pigment epithelium after laser photocoagulation in mouse eye. Invest. Ophthalmol. Vis. Sci. 56, 8314-8324. https://doi.org/10.1167/iovs.15-18359
  17. Harada, N., Tamai, Y., Ishikawa, T., Sauer, B., Takaku, K., Oshima, M., and Taketo, M.M. (1999). Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J. 18, 5931-5942. https://doi.org/10.1093/emboj/18.21.5931
  18. Heavner, W. and Pevny, L. (2012). Eye development and retinogenesis. Cold Spring Harb. Perspect. Biol. 4, a008391.
  19. Horsford, D.J., Nguyen, M.T., Sellar, G.C., Kothary, R., Arnheiter, H., and McInnes, R.R. (2005). Chx10 repression of Mitf is required for the maintenance of mammalian neuroretinal identity. Development 132, 177-187. https://doi.org/10.1242/dev.01571
  20. Kim, H.T. and Kim, J.W. (2012). Compartmentalization of vertebrate optic neuroephithelium: external cues and transcription factors. Mol. Cells 33, 317-324. https://doi.org/10.1007/s10059-012-0030-5
  21. Kim, J.W., Kang, K.H., Burrola, P., Mak, T.W., and Lemke, G. (2008). Retinal degeneration triggered by inactivation of PTEN in the retinal pigment epithelium. Genes Dev. 22, 3147-3157. https://doi.org/10.1101/gad.1700108
  22. Kim, Y.J., Park, S., Ha, T., Kim, S., Lim, S., You, H., and Kim, J.W. (2021). Retinoid metabolism in the degeneration of Pten-deficient mouse retinal pigment epithelium. Mol. Cells 44, 613-622. https://doi.org/10.14348/molcells.2021.0138
  23. Lacovelli, J., Zhao, C., Wolkow, N., Veldman, P., Gollomp, K., Ojha, P., Lukinova, N., King, A., Feiner, L., Esumi, N., et al. (2011). Generation of Cre transgenic mice with postnatal RPE-specific ocular expression. Invest. Ophthalmol. Vis. Sci. 52, 1378-1383. https://doi.org/10.1167/iovs.10-6347
  24. Le, D., Lim, S., Min, K.W., Park, J.W., Kim, Y., Ha, T., Moon, K.H., Wagner, K.U., and Kim, J.W. (2021). Tsg101 is necessary for the establishment and maintenance of mouse retinal pigment epithelial cell polarity. Mol. Cells 44, 168-178. https://doi.org/10.14348/molcells.2021.0027
  25. Lieven, O. and Ruther, U. (2011). The Dkk1 dose is critical for eye development. Dev. Biol. 355, 124-137. https://doi.org/10.1016/j.ydbio.2011.04.023
  26. Liu, H., Mohamed, O., Dufort, D., and Wallace, V.A. (2003). Characterization of Wnt signaling components and activation of the Wnt canonical pathway in the murine retina. Dev. Dyn. 227, 323-334. https://doi.org/10.1002/dvdy.10315
  27. Liu, H., Thurig, S., Mohamed, O., Dufort, D., and Wallace, V.A. (2006). Mapping canonical Wnt signaling in the developing and adult retina. Invest. Ophthalmol. Vis. Sci. 47, 5088-5097. https://doi.org/10.1167/iovs.06-0403
  28. Machon, O., Kreslova, J., Ruzickova, J., Vacik, T., Klimova, L., Fujimura, N., Lachova, J., and Kozmik, Z. (2010). Lens morphogenesis is dependent on Pax6-mediated inhibition of the canonical Wnt/beta-catenin signaling in the lens surface ectoderm. Genesis 48, 86-95. https://doi.org/10.1002/dvg.20583
  29. Mani, P., Jarrell, A., Myers, J., and Atit, R. (2010). Visualizing canonical Wnt signaling during mouse craniofacial development. Dev. Dyn. 239, 354-363. https://doi.org/10.1002/dvdy.22072
  30. Maretto, S., Cordenonsi, M., Dupont, S., Braghetta, P., Broccoli, V., Hassan, A.B., Volpin, D., Bressan, G.M., and Piccolo, S. (2003). Mapping Wnt/beta-catenin signaling during mouse development and in colorectal tumors. Proc. Natl. Acad. Sci. U. S. A. 100, 3299-3304. https://doi.org/10.1073/pnas.0434590100
  31. Mori, M., Metzger, D., Garnier, J.M., Chambon, P., and Mark, M. (2002). Site-specific somatic mutagenesis in the retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 43, 1384-1388.
  32. Mosimann, C., Hausmann, G., and Basler, K. (2009). Beta-catenin hits chromatin: regulation of Wnt target gene activation. Nat. Rev. Mol. Cell Biol. 10, 276-286. https://doi.org/10.1038/nrm2654
  33. Perez-Moreno, M., Jamora, C., and Fuchs, E. (2003). Sticky business: orchestrating cellular signals at adherens junctions. Cell 112, 535-548. https://doi.org/10.1016/S0092-8674(03)00108-9
  34. Piedra, J., Miravet, S., Castano, J., Palmer, H.G., Heisterkamp, N., Garcia de Herreros, A., and Dunach, M. (2003). p120 Catenin-associated Fer and Fyn tyrosine kinases regulate beta-catenin Tyr-142 phosphorylation and beta-catenin-alpha-catenin interaction. Mol. Cell. Biol. 23, 2287-2297. https://doi.org/10.1128/MCB.23.7.2287-2297.2003
  35. Rhee, J., Mahfooz, N.S., Arregui, C., Lilien, J., Balsamo, J., and VanBerkum, M.F. (2002). Activation of the repulsive receptor Roundabout inhibits N-cadherin-mediated cell adhesion. Nat. Cell Biol. 4, 798-805. https://doi.org/10.1038/ncb858
  36. Roura, S., Miravet, S., Piedra, J., Garcia de Herreros, A., and Dunach, M. (1999). Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J. Biol. Chem. 274, 36734-36740. https://doi.org/10.1074/jbc.274.51.36734
  37. Rowan, S., Chen, C.M., Young, T.L., Fisher, D.E., and Cepko, C.L. (2004). Transdifferentiation of the retina into pigmented cells in ocular retardation mice defines a new function of the homeodomain gene Chx10. Development 131, 5139-5152. https://doi.org/10.1242/dev.01300
  38. Sato, S., Inoue, T., Terada, K., Matsuo, I., Aizawa, S., Tano, Y., Fujikado, T., and Furukawa, T. (2007). Dkk3-Cre BAC transgenic mouse line: a tool for highly efficient gene deletion in retinal progenitor cells. Genesis 45, 502-507. https://doi.org/10.1002/dvg.20318
  39. Take-uchi, M., Clarke, J.D., and Wilson, S.W. (2003). Hedgehog signalling maintains the optic stalk-retinal interface through the regulation of Vax gene activity. Development 130, 955-968. https://doi.org/10.1242/dev.00305
  40. Thumann, G. (2001). Development and cellular functions of the iris pigment epithelium. Surv. Ophthalmol. 45, 345-354. https://doi.org/10.1016/S0039-6257(00)00195-8
  41. Valenta, T., Gay, M., Steiner, S., Draganova, K., Zemke, M., Hoffmans, R., Cinelli, P., Aguet, M., Sommer, L., and Basler, K. (2011). Probing transcription-specific outputs of beta-catenin in vivo. Genes Dev. 25, 2631-2643. https://doi.org/10.1101/gad.181289.111
  42. van Veelen, W., Le, N.H., Helvensteijn, W., Blonden, L., Theeuwes, M., Bakker, E.R., Franken, P.F., van Gurp, L., Meijlink, F., van der Valk, M.A., et al. (2011). beta-catenin tyrosine 654 phosphorylation increases Wnt signalling and intestinal tumorigenesis. Gut 60, 1204-1212. https://doi.org/10.1136/gut.2010.233460
  43. Westenskow, P., Piccolo, S., and Fuhrmann, S. (2009). Beta-catenin controls differentiation of the retinal pigment epithelium in the mouse optic cup by regulating Mitf and Otx2 expression. Development 136, 2505-2510. https://doi.org/10.1242/dev.032136
  44. Zhao, L., Saitsu, H., Sun, X., Shiota, K., and Ishibashi, M. (2010). Sonic hedgehog is involved in formation of the ventral optic cup by limiting Bmp4 expression to the dorsal domain. Mech. Dev. 127, 62-72. https://doi.org/10.1016/j.mod.2009.10.006
  45. Zhou, M., Geathers, J.S., Grillo, S.L., Weber, S.R., Wang, W., Zhao, Y., and Sundstrom, J.M. (2020). Role of epithelial-mesenchymal transition in retinal pigment epithelium dysfunction. Front. Cell Dev. Biol. 8, 501.