DOI QR코드

DOI QR Code

The Bcl-2/Bcl-xL Inhibitor ABT-263 Attenuates Retinal Degeneration by Selectively Inducing Apoptosis in Senescent Retinal Pigment Epithelial Cells

  • Wonseon Ryu (Department of Ophthalmology, Konkuk University School of Medicine) ;
  • Chul-Woo Park (Department of Ophthalmology, Konkuk University School of Medicine) ;
  • Junghoon Kim (Department of Ophthalmology, Konkuk University School of Medicine) ;
  • Hyungwoo Lee (Department of Ophthalmology, Konkuk University School of Medicine) ;
  • Hyewon Chung (Department of Ophthalmology, Konkuk University School of Medicine)
  • 투고 : 2022.12.05
  • 심사 : 2023.02.12
  • 발행 : 2023.07.31

초록

Age-related macular degeneration (AMD) is one of the leading causes of blindness in elderly individuals. However, the currently used intravitreal injections of anti-vascular endothelial growth factor are invasive, and repetitive injections are also accompanied by a risk of intraocular infection. The pathogenic mechanism of AMD is still not completely understood, but a multifactorial mechanism that combines genetic predisposition and environmental factors, including cellular senescence, has been suggested. Cellular senescence refers to the accumulation of cells that stop dividing due to the presence of free radicals and DNA damage. Characteristics of senescent cells include nuclear hypertrophy, increased levels of cell cycle inhibitors such as p16 and p21, and resistance to apoptosis. Senolytic drugs remove senescent cells by targeting the main characteristics of these cells. One of the senolytic drugs, ABT-263, which inhibits the antiapoptotic functions of Bcl-2 and Bcl-xL, may be a new treatment for AMD patients because it targets senescent retinal pigment epithelium (RPE) cells. We proved that it selectively kills doxorubicin (Dox)-induced senescent ARPE-19 cells by activating apoptosis. By removing senescent cells, the expression of inflammatory cytokines was reduced, and the proliferation of the remaining cells was increased. When ABT-263 was orally administered to the mouse model of senescent RPE cells induced by Dox, we confirmed that senescent RPE cells were selectively removed and retinal degeneration was alleviated. Therefore, we suggest that ABT-263, which removes senescent RPE cells through its senolytic effect, has the potential to be the first orally administered senolytic drug for the treatment of AMD.

키워드

과제정보

This paper was supported by Konkuk University in 2021.

참고문헌

  1. Arepalli, S. and Kaiser, P.K. (2021). Pipeline therapies for neovascular age related macular degeneration. Int. J. Retina Vitreous 7, 55.
  2. Birch, J. and Gil, J. (2020). Senescence and the SASP: many therapeutic avenues. Genes Dev. 34, 1565-1576. https://doi.org/10.1101/gad.343129.120
  3. Cabral de Guimaraes, T.A., Daich Varela, M., Georgiou, M., and Michaelides, M. (2022). Treatments for dry age-related macular degeneration: therapeutic avenues, clinical trials and future directions. Br. J. Ophthalmol. 106, 297-304. https://doi.org/10.1136/bjophthalmol-2020-318452
  4. Chae, J.B., Jang, H., Son, C., Park, C.W., Choi, H., Jin, S., Lee, H.Y., Lee, H., Ryu, J.H., Kim, N., et al. (2021). Targeting senescent retinal pigment epithelial cells facilitates retinal regeneration in mouse models of age-related macular degeneration. Geroscience 43, 2809-2833. https://doi.org/10.1007/s11357-021-00457-4
  5. Chang, J., Wang, Y., Shao, L., Laberge, R.M., Demaria, M., Campisi, J., Janakiraman, K., Sharpless, N.E., Ding, S., Feng, W., et al. (2016). Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78-83. https://doi.org/10.1038/nm.4010
  6. Chen, Y., Bedell, M., and Zhang, K. (2010). Age-related macular degeneration: genetic and environmental factors of disease. Mol. Interv. 10, 271-281. https://doi.org/10.1124/mi.10.5.4
  7. Childs, B.G., Durik, M., Baker, D.J., and van Deursen, J.M. (2015). Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat. Med. 21, 1424-1435. https://doi.org/10.1038/nm.4000
  8. Comparison of Age-related Macular Degeneration Treatments Trials (CATT) Research Group, Maguire, M.G., Martin, D.F., Ying, G.S., Jaffe, G.J., Daniel, E., Grunwald, J.E., Toth, C.A., Ferris, F.L., 3rd, and Fine, S.L. (2016). Five-year outcomes with anti-vascular endothelial growth factor treatment of neovascular age-related macular degeneration: the comparison of age-related macular degeneration treatments trials. Ophthalmology 123, 1751-1761. https://doi.org/10.1016/j.ophtha.2016.03.045
  9. Cox, J.T., Eliott, D., and Sobrin, L. (2021). Inflammatory complications of intravitreal anti-VEGF injections. J. Clin. Med. 10, 981.
  10. Crespo-Garcia, S., Tsuruda, P.R., Dejda, A., Ryan, R.D., Fournier, F., Chaney, S.Y., Pilon, F., Dogan, T., Cagnone, G., Patel, P., et al. (2021). Pathological angiogenesis in retinopathy engages cellular senescence and is amenable to therapeutic elimination via BCL-xL inhibition. Cell Metab. 33, 818-832. e7. https://doi.org/10.1016/j.cmet.2021.01.011
  11. Di Micco, R., Krizhanovsky, V., Baker, D., and d'Adda di Fagagna, F. (2021). Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat. Rev. Mol. Cell Biol. 22, 75-95. https://doi.org/10.1038/s41580-020-00314-w
  12. Ding, X., Patel, M., and Chan, C.C. (2009). Molecular pathology of age-related macular degeneration. Prog. Retin. Eye Res. 28, 1-18. https://doi.org/10.1016/j.preteyeres.2008.10.001
  13. Dubik, N. and Mai, S. (2020). Lamin A/C: function in normal and tumor cells. Cancers (Basel) 12, 3688.
  14. Falavarjani, K.G. and Nguyen, Q.D. (2013). Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye (Lond.) 27, 787-794. https://doi.org/10.1038/eye.2013.107
  15. Gandhi, L., Camidge, D.R., Ribeiro de Oliveira, M., Bonomi, P., Gandara, D., Khaira, D., Hann, C.L., McKeegan, E.M., Litvinovich, E., Hemken, P.M., et al. (2011). Phase I study of Navitoclax (ABT-263), a novel Bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors. J. Clin. Oncol. 29, 909-916. https://doi.org/10.1200/JCO.2010.31.6208
  16. Han, Z., Liang, J., Li, Y., and He, J. (2019). Drugs and clinical approaches targeting the antiapoptotic protein: a review. Biomed Res. Int. 2019, 1212369.
  17. Handa, J.T., Bowes Rickman, C., Dick, A.D., Gorin, M.B., Miller, J.W., Toth, C.A., Ueffing, M., Zarbin, M., and Farrer, L.A. (2019). A systems biology approach towards understanding and treating non-neovascular age-related macular degeneration. Nat. Commun. 10, 3347.
  18. Huang, W., Hickson, L.J., Eirin, A., Kirkland, J.L., and Lerman, L.O. (2022). Cellular senescence: the good, the bad and the unknown. Nat. Rev. Nephrol. 18, 611-627. https://doi.org/10.1038/s41581-022-00601-z
  19. Kim, S. and Kim, C. (2021). Transcriptomic analysis of cellular senescence: one step closer to senescence atlas. Mol. Cells 44, 136-145. https://doi.org/10.14348/molcells.2021.2239
  20. Kipps, T.J., Eradat, H., Grosicki, S., Catalano, J., Cosolo, W., Dyagil, I.S., Yalamanchili, S., Chai, A., Sahasranaman, S., Punnoose, E., et al. (2015). A phase 2 study of the BH3 mimetic BCL2 inhibitor navitoclax (ABT263) with or without rituximab, in previously untreated B-cell chronic lymphocytic leukemia. Leuk. Lymphoma 56, 2826-2833. https://doi.org/10.3109/10428194.2015.1030638
  21. Kirkland, J.L. and Tchkonia, T. (2015). Clinical strategies and animal models for developing senolytic agents. Exp. Gerontol. 68, 19-25. https://doi.org/10.1016/j.exger.2014.10.012
  22. Kozlowski, M.R. (2012). RPE cell senescence: a key contributor to age-related macular degeneration. Med. Hypotheses 78, 505-510. https://doi.org/10.1016/j.mehy.2012.01.018
  23. Lee, G. (2022). Cellular senescence: the villain of metabolic disease? Mol. Cells 45, 531-533. https://doi.org/10.14348/molcells.2022.0084
  24. Lock, R., Carol, H., Houghton, P.J., Morton, C.L., Kolb, E.A., Gorlick, R., Reynolds, C.P., Maris, J.M., Keir, S.T., Wu, J., et al. (2008). Initial testing (stage 1) of the BH3 mimetic ABT-263 by the pediatric preclinical testing program. Pediatr. Blood Cancer 50, 1181-1189. https://doi.org/10.1002/pbc.21433
  25. Lopez-Otin, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The hallmarks of aging. Cell 153, 1194-1217. https://doi.org/10.1016/j.cell.2013.05.039
  26. Mohamad Anuar, N.N., Nor Hisam, N.S., Liew, S.L., and Ugusman, A. (2020). Clinical review: navitoclax as a pro-apoptotic and anti-fibrotic agent. Front. Pharmacol. 11, 564108.
  27. Rudin, C.M., Hann, C.L., Garon, E.B., Ribeiro de Oliveira, M., Bonomi, P.D., Camidge, D.R., Chu, Q., Giaccone, G., Khaira, D., Ramalingam, S.S., et al. (2012). Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. Clin. Cancer Res. 18, 3163-3169. https://doi.org/10.1158/1078-0432.CCR-11-3090
  28. Serrano, M. and Barzilai, N. (2018). Targeting senescence. Nat. Med. 24, 1092-1094. https://doi.org/10.1038/s41591-018-0141-4
  29. Shoemaker, A.R., Mitten, M.J., Adickes, J., Ackler, S., Refici, M., Ferguson, D., Oleksijew, A., O'Connor, J.M., Wang, B., Frost, D.J., et al. (2008). Activity of the Bcl-2 family inhibitor ABT-263 in a panel of small cell lung cancer xenograft models. Clin. Cancer Res. 14, 3268-3277. https://doi.org/10.1158/1078-0432.CCR-07-4622
  30. Tse, C., Shoemaker, A.R., Adickes, J., Anderson, M.G., Chen, J., Jin, S., Johnson, E.F., Marsh, K.C., Mitten, M.J., Nimmer, P., et al. (2008). ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 68, 3421-3428. https://doi.org/10.1158/0008-5472.CAN-07-5836
  31. de Vos, S., Leonard, J.P., Friedberg, J.W., Zain, J., Dunleavy, K., Humerickhouse, R., Hayslip, J., Pesko, J., and Wilson, W.H. (2021). Safety and efficacy of navitoclax, a BCL-2 and BCL-XL inhibitor, in patients with relapsed or refractory lymphoid malignancies: results from a phase 2a study. Leuk. Lymphoma 62, 810-818. https://doi.org/10.1080/10428194.2020.1845332
  32. Wilson, W.H., Tulpule, A., Levine, A.M., Dunleavy, K., Krivoshik, A.P., Hagey, A.E., Shovlin, M., Gloria, M.A., Greco, R., Xiong, H., et al. (2007). A Phase 1/2a study evaluating the safety, pharmacokinetics, and efficacy of ABT-263 in subjects with refractory or relapsed lymphoid malignancies. Blood 110, 1371.
  33. Wong, W.L., Su, X., Li, X., Cheung, C.M., Klein, R., Cheng, C.Y., and Wong, T.Y. (2014). Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob. Health 2, e106-e116. https://doi.org/10.1016/S2214-109X(13)70145-1