DOI QR코드

DOI QR Code

The Pleiotropic Face of CREB Family Transcription Factors

  • Md. Arifur Rahman Chowdhury (Division of Life Sciences (Molecular Biology Major), Department of Bioactive Material Sciences, and Research Center of Bioactive Materials, Jeonbuk National University) ;
  • Jungeun An (Division of Life Sciences (Life Sciences Major), Jeonbuk National University) ;
  • Sangyun Jeong (Division of Life Sciences (Molecular Biology Major), Department of Bioactive Material Sciences, and Research Center of Bioactive Materials, Jeonbuk National University)
  • Received : 2022.12.22
  • Accepted : 2023.02.07
  • Published : 2023.07.31

Abstract

cAMP responsive element-binding protein (CREB) is one of the most intensively studied phosphorylation-dependent transcription factors that provide evolutionarily conserved mechanisms of differential gene expression in vertebrates and invertebrates. Many cellular protein kinases that function downstream of distinct cell surface receptors are responsible for the activation of CREB. Upon functional dimerization of the activated CREB to cis-acting cAMP responsive elements within the promoters of target genes, it facilitates signal-dependent gene expression. From the discovery of CREB, which is ubiquitously expressed, it has been proven to be involved in a variety of cellular processes that include cell proliferation, adaptation, survival, differentiation, and physiology, through the control of target gene expression. In this review, we highlight the essential roles of CREB proteins in the nervous system, the immune system, cancer development, hepatic physiology, and cardiovascular function and further discuss a wide range of CREB-associated diseases and molecular mechanisms underlying the pathogenesis of these diseases.

Keywords

Acknowledgement

We thank Md. Mazedul Haq for critical reading of the manuscript. This research was supported by a grant from the National University Promotion Program at Jeonbuk National University provided in 2021.

References

  1. Abel, T., Bhatt, R., and Maniatis, T. (1992). A Drosophila CREB/ATF transcriptional activator binds to both fat body- and liver-specific regulatory elements. Genes Dev. 6, 466-480. https://doi.org/10.1101/gad.6.3.466
  2. Altarejos, J.Y., Goebel, N., Conkright, M.D., Inoue, H., Xie, J., Arias, C.M., Sawchenko, P.E., and Montminy, M. (2008). The Creb1 coactivator Crtc1 is required for energy balance and fertility. Nat. Med. 14, 1112-1117. https://doi.org/10.1038/nm.1866
  3. Amidfar, M., de Oliveira, J., Kucharska, E., Budni, J., and Kim, Y.K. (2020). The role of CREB and BDNF in neurobiology and treatment of Alzheimer's disease. Life Sci. 257, 118020.
  4. Arany, I., Megyesi, J.K., Reusch, J.E.B., and Safirstein, R.L. (2005). CREB mediates ERK-induced survival of mouse renal tubular cells after oxidant stress. Kidney Int. 68, 1573-1582. https://doi.org/10.1111/j.1523-1755.2005.00569.x
  5. Arany, Z., Novikov, M., Chin, S., Ma, Y., Rosenzweig, A., and Spiegelman, B.M. (2006). Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-γ coactivator 1α. Proc. Natl. Acad. Sci. U. S. A. 103, 10086-10091. https://doi.org/10.1073/pnas.0603615103
  6. Arbour, N., Vanderluit, J.L., Le Grand, J.N., Jahani-Asl, A., Ruzhynsky, V.A., Cheung, E.C.C., Kelly, M.A., MacKenzie, A.E., Park, D.S., Opferman, J.T., et al. (2008). Mcl-1 is a key regulator of apoptosis during CNS development and after DNA damage. J. Neurosci. 28, 6068-6078. https://doi.org/10.1523/JNEUROSCI.4940-07.2008
  7. Asakawa, M., Takano, H., Nagai, T., Uozumi, H., Hasegawa, H., Kubota, N., Saito, T., Masuda, Y., Kadowaki, T., and Komuro, I. (2002). Peroxisome proliferator-activated receptor γ plays a critical role in inhibition of cardiac hypertrophy in vitro and in vivo. Circulation 105, 1240-1246. https://doi.org/10.1161/hc1002.105225
  8. Awaad, A.K., Kamel, M.A., Mohamed, M.M., Helmy, M.H., Youssef, M.I., Zaki, E.I., Essawy, M.M., and Hegazy, M.G.A. (2020). The role of hepatic transcription factor cAMP response element-binding protein (CREB) during the development of experimental nonalcoholic fatty liver: a biochemical and histomorphometric study. Egypt. Liver J. 10, 36.
  9. Barrot, M., Olivier, J.D.A., Perrotti, L.I., DiLeone, R.J., Berton, O., Eisch, A.J., Impey, S., Storm, D.R., Neve, R.L., Yin, J.C., et al. (2002). CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proc. Natl. Acad. Sci. U. S. A. 99, 11435-11440. https://doi.org/10.1073/pnas.172091899
  10. Belgacem, Y.H. and Borodinsky, L.N. (2017). CREB at the crossroads of activity-dependent regulation of nervous system development and function. Adv. Exp. Med. Biol. 1015, 19-39. https://doi.org/10.1007/978-3-319-62817-2_2
  11. Bianchi, L.M., Conover, J.C., Fritzsch, B., DeChiara, T., Lindsay, R.M., and Yancopoulos, G.D. (1996). Degeneration of vestibular neurons in late embryogenesis of both heterozygous and homozygous BDNF null mutant mice. Development 122, 1965-1973. https://doi.org/10.1242/dev.122.6.1965
  12. Bleckmann, S.C., Blendy, J.A., Rudolph, D., Monaghan, A.P., Schmid, W., and Schutz, G. (2002). Activating transcription factor 1 and CREB are important for cell survival during early mouse development. Mol. Cell. Biol. 22, 1919-1925. https://doi.org/10.1128/MCB.22.6.1919-1925.2002
  13. Blendy, J.A. (2006). The role of CREB in depression and antidepressant treatment. Biol. Psychiatry 59, 1144-1150. https://doi.org/10.1016/j.biopsych.2005.11.003
  14. Blendy, J.A., Kaestner, K.H., Weinbauer, G.F., Nieschlag, E., and Schutz, G. (1996). Severe impairment of spermatogenesis in mice lacking the CREM gene. Nature 380, 162-165. https://doi.org/10.1038/380162a0
  15. Cameron, H.A. and Glover, L.R. (2015). Adult neurogenesis: beyond learning and memory. Annu. Rev. Psychol. 66, 53-81. https://doi.org/10.1146/annurev-psych-010814-015006
  16. Caracciolo, L., Marosi, M., Mazzitelli, J., Latifi, S., Sano, Y., Galvan, L., Kawaguchi, R., Holley, S., Levine, M.S., Coppola, G., et al. (2018). CREB controls cortical circuit plasticity and functional recovery after stroke. Nat. Commun. 9, 2250.
  17. Castellucci, V.F., Kandel, E.R., Schwartz, J.H., Wilson, F.D., Nairn, A.C., and Greengard, P. (1980). Intracellular injection of the catalytic subunit of cyclic AMP-dependent protein kinase simulates facilitation of transmitter release underlying behavioral sensitization in Aplysia. Proc. Natl. Acad. Sci. U. S. A. 77, 7492-7496. https://doi.org/10.1073/pnas.77.12.7492
  18. Cesare, D.D., Jacquot, S., Hanauer, A., and Sassone-Corsi, P. (1998). Rsk-2 activity is necessary for epidermal growth factor-induced phosphorylation of CREB protein and transcription of c-fos gene. Proc. Natl. Acad. Sci. U. S. A. 95, 12202-12207. https://doi.org/10.1073/pnas.95.21.12202
  19. Chan, E.C., Dusting, G.J., Guo, N., Peshavariya, H.M., Taylor, C.J., Dilley, R., Narumiya, S., and Jiang, F. (2010). Prostacyclin receptor suppresses cardiac fibrosis: role of CREB phosphorylation. J. Mol. Cell. Cardiol. 49, 176-185. https://doi.org/10.1016/j.yjmcc.2010.04.006
  20. Cho, E.C., Mitton, B., and Sakamoto, K.M. (2011). CREB and leukemogenesis. Crit. Rev. Oncog. 16, 37-46. https://doi.org/10.1615/CritRevOncog.v16.i1-2.50
  21. Conkright, M.D., Canettieri, G., Screaton, R., Guzman, E., Miraglia, L., Hogenesch, J.B., and Montminy, M. (2003). TORCs: transducers of regulated CREB activity. Mol. Cell 12, 413-423. https://doi.org/10.1016/j.molcel.2003.08.013
  22. Deng, X., Deng, L., Wang, P., Cheng, C., and Xu, K. (2016). Post-translational modification of CREB‑1 decreases collagen I expression by inhibiting the TGF-β1 signaling pathway in rat hepatic stellate cells. Mol. Med. Rep. 14, 5751-5759. https://doi.org/10.3892/mmr.2016.5926
  23. Ditlevsen, D.K., Povlsen, G.K., Berezin, V., and Bock, E. (2008). NCAM-induced intracellular signaling revisited. J. Neurosci. Res. 86, 727-743. https://doi.org/10.1002/jnr.21551
  24. Dooley, K.A., Bennett, M.K., and Osborne, T.F. (1999). A critical role for cAMP response element-binding protein (CREB) as a Co-activator in sterol-regulated transcription of 3-hydroxy-3-methylglutaryl coenzyme A synthase promoter. J. Biol. Chem. 274, 5285-5291. https://doi.org/10.1074/jbc.274.9.5285
  25. Dooley, K.A., Millinder, S., and Osborne, T.F. (1998). Sterol regulation of 3-hydroxy-3-methylglutaryl-coenzyme A synthase gene through a direct interaction between sterol regulatory element binding protein and the trimeric CCAAT-binding factor/nuclear factor Y. J. Biol. Chem. 273, 1349-1356. https://doi.org/10.1074/jbc.273.3.1349
  26. Dragunow, M. (2004). CREB and neurodegeneration. Front. Biosci. 9, 100-103. https://doi.org/10.2741/1197
  27. Eggert, S., Kins, S., Endres, K., and Brigadski, T. (2022). Brothers in arms: proBDNF/BDNF and sAPPα/Aβ-signaling and their common interplay with ADAM10, TrkB, p75NTR, sortilin, and sorLA in the progression of Alzheimer's disease. Biol. Chem. 403, 43-71. https://doi.org/10.1515/hsz-2021-0330
  28. Fang, Y.L., Chen, H., Wang, C.L., and Liang, L. (2018). Pathogenesis of nonalcoholic fatty liver disease in children and adolescence: from "two hit theory" to "multiple hit model". World J. Gastroenterol. 24, 2974-2983. https://doi.org/10.3748/wjg.v24.i27.2974
  29. Fentzke, R.C., Korcarz, C.E., Lang, R.M., Lin, H., and Leiden, J.M. (1998). Dilated cardiomyopathy in transgenic mice expressing a dominant-negative CREB transcription factor in the heart. J. Clin. Invest. 101, 2415-2426. https://doi.org/10.1172/JCI2950
  30. Ferraris, J.D., Persaud, P., Williams, C.K., Chen, Y., and Burg, M.B. (2002). cAMP-independent role of PKA in tonicity-induced transactivation of tonicity-responsive enhancer/ osmotic response element-binding protein. Proc. Natl. Acad. Sci. U. S. A. 99, 16800-16805. https://doi.org/10.1073/pnas.222659799
  31. Fisher, M.L., LeMalefant, R.M., Zhou, L., Huang, G., and Turner, J.R. (2017). Distinct roles of CREB within the ventral and dorsal hippocampus in mediating nicotine withdrawal phenotypes. Neuropsychopharmacology 42, 1599-1609. https://doi.org/10.1038/npp.2016.257
  32. Friedrich, M., Heimer, N., Stoehr, C., Steven, A., Wach, S., Taubert, H., Hartmann, A., and Seliger, B. (2020). CREB1 is affected by the microRNAs miR-22-3p, miR-26a-5p, miR-27a-3p, and miR-221-3p and correlates with adverse clinicopathological features in renal cell carcinoma. Sci. Rep. 10, 6499.
  33. Garnier, A., Fortin, D., Delomenie, C., Momken, I., Veksler, V., and Ventura-Clapier, R. (2003). Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. J. Physiol. 551, 491-501. https://doi.org/10.1113/jphysiol.2003.045104
  34. Gass, P. and Riva, M.A. (2007). CREB, neurogenesis and depression. Bioessays 29, 957-961. https://doi.org/10.1002/bies.20658
  35. Ghosh, S., May, M.J., and Kopp, E.B. (1998). NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225-260. https://doi.org/10.1146/annurev.immunol.16.1.225
  36. Gonzalez, G.A. and Montminy, M.R. (1989). Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59, 675-680. https://doi.org/10.1016/0092-8674(89)90013-5
  37. Hai, T. and Hartman, M.G. (2001). The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene 273, 1-11. https://doi.org/10.1016/S0378-1119(01)00551-0
  38. Hallam, T.M. and Bourtchouladze, R. (2006). Rubinstein-Taybi syndrome: molecular findings and therapeutic approaches to improve cognitive dysfunction. Cell. Mol. Life Sci. 63, 1725-1735. https://doi.org/10.1007/s00018-005-5555-8
  39. Hampel, H., Hardy, J., Blennow, K., Chen, C., Perry, G., Kim, S.H., Villemagne, V.L., Aisen, P., Vendruscolo, M., Iwatsubo, T., et al. (2021). The amyloid-β pathway in Alzheimer's disease. Mol. Psychiatry 26, 5481-5503. https://doi.org/10.1038/s41380-021-01249-0
  40. Han, H.S., Choi, B.H., Kim, J.S., Kang, G., and Koo, S.H. (2017). Hepatic Crtc2 controls whole body energy metabolism via a miR-34a-Fgf21 axis. Nat. Commun. 8, 1878.
  41. Han, H.S., Kang, G., Kim, J.S., Choi, B.H., and Koo, S.H. (2016). Regulation of glucose metabolism from a liver-centric perspective. Exp. Mol. Med. 48, e218.
  42. Han, H.S., Kwon, Y., and Koo, S.H. (2020). Role of CRTC2 in metabolic homeostasis: key regulator of whole-body energy metabolism? Diabetes Metab. J. 44, 498-508. https://doi.org/10.4093/dmj.2019.0200
  43. Harum, K.H., Alemi, L., and Johnston, M.V. (2001). Cognitive impairment in Coffin-Lowry syndrome correlates with reduced RSK2 activation. Neurology 56, 207-214. https://doi.org/10.1212/WNL.56.2.207
  44. Herzig, S., Hedrick, S., Morantte, I., Koo, S.H., Galimi, F., and Montminy, M. (2003). CREB controls hepatic lipid metabolism through nuclear hormone receptor PPAR-γ. Nature 426, 190-193. https://doi.org/10.1038/nature02110
  45. Herzig, S., Long, F., Jhala, U.S., Hedrick, S., Quinn, R., Bauer, A., Rudolph, D., Schutz, G., Yoon, C., Puigserver, P., et al. (2001). CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413, 179-183. https://doi.org/10.1038/35093131
  46. Hu, X., Paik, P.K., Chen, J., Yarilina, A., Kockeritz, L., Lu, T.T., Woodgett, J.R., and Ivashkiv, L.B. (2006). IFN-γ suppresses IL-10 production and synergizes with TLR2 by regulating GSK3 and CREB/AP-1 proteins. Immunity 24, 563-574. https://doi.org/10.1016/j.immuni.2006.02.014
  47. Huang, T.Y., Zheng, D., Houmard, J.A., Brault, J.J., Hickner, R.C., and Cortright, R.N. (2017). Overexpression of PGC-1α increases peroxisomal activity and mitochondrial fatty acid oxidation in human primary myotubes. Am. J. Physiol. Endocrinol. Metab. 312, E253-E263. https://doi.org/10.1152/ajpendo.00331.2016
  48. Huang, W., Liu, X., Cao, J., Meng, F., Li, M., Chen, B., and Zhang, J. (2015). miR-134 regulates ischemia/reperfusion injury-induced neuronal cell death by regulating CREB signaling. J. Mol. Neurosci. 55, 821-829. https://doi.org/10.1007/s12031-014-0434-0
  49. Hughes-Fulford, M., Sugano, E., Schopper, T., Li, C.F., Boonyaratanakornkit, J.B., and Cogoli, A. (2005). Early immune response and regulation of IL-2 receptor subunits. Cell. Signal. 17, 1111-1124. https://doi.org/10.1016/j.cellsig.2004.12.016
  50. Impey, S., McCorkle, S.R., Cha-Molstad, H., Dwyer, J.M., Yochum, G.S., Boss, J.M., McWeeney, S., Dunn, J.J., Mandel, G., and Goodman, R.H. (2004). Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119, 1041-1054.
  51. Iourgenko, V., Zhang, W., Mickanin, C., Daly, I., Jiang, C., Hexham, J.M., Orth, A.P., Miraglia, L., Meltzer, J., Garza, D., et al. (2003). Identification of a family of cAMP response element-binding protein coactivators by genome-scale functional analysis in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 100, 12147-12152. https://doi.org/10.1073/pnas.1932773100
  52. Jeong, S. (2017). Molecular and cellular basis of neurodegeneration in Alzheimer's disease. Mol. Cells 40, 613-620. https://doi.org/10.14348/molcells.2017.2319
  53. Jiang, H., Nucifora, F.C.J., Ross, C.A., and DeFranco, D.B. (2003). Cell death triggered by polyglutamine-expanded huntingtin in a neuronal cell line is associated with degradation of CREB-binding protein. Hum. Mol. Genet. 12, 1-12. https://doi.org/10.1093/hmg/ddg002
  54. Josselyn, S.A. and Nguyen, P.V. (2005). CREB, synapses and memory disorders: past progress and future challenges. Curr. Drug Targets CNS Neurol. Disord. 4, 481-497. https://doi.org/10.2174/156800705774322058
  55. Kaang, B.K., Kandel, E.R., and Grant, S.G. (1993). Activation of cAMP-responsive genes by stimuli that produce long-term facilitation in Aplysia sensory neurons. Neuron 10, 427-435. https://doi.org/10.1016/0896-6273(93)90331-K
  56. Kalkhoven, E., Roelfsema, J.H., Teunissen, H., den Boer, A., Ariyurek, Y., Zantema, A., Breuning, M.H., Hennekam, R.C.M., and Peters, D.J.M. (2003). Loss of CBP acetyltransferase activity by PHD finger mutations in Rubinstein-Taybi syndrome. Hum. Mol. Genet. 12, 441-450. https://doi.org/10.1093/hmg/ddg039
  57. Kay, C., Collins, J.A., Miedzybrodzka, Z., Madore, S.J., Gordon, E.S., Gerry, N., Davidson, M., Slama, R.A., and Hayden, M.R. (2016). Huntington disease reduced penetrance alleles occur at high frequency in the general population. Neurology 87, 282-288. https://doi.org/10.1212/WNL.0000000000002858
  58. Kida, S., Josselyn, S.A., Pena de Ortiz, S., Kogan, J.H., Chevere, I., Masushige, S., and Silva, A.J. (2002). CREB required for the stability of new and reactivated fear memories. Nat. Neurosci. 5, 348-355. https://doi.org/10.1038/nn819
  59. Kogan, J.H., Frankland, P.W., Blendy, J.A., Coblentz, J., Marowitz, Z., Schutz, G., and Silva, A.J. (1997). Spaced training induces normal long-term memory in CREB mutant mice. Curr. Biol. 7, 1-11. https://doi.org/10.1016/S0960-9822(06)00022-4
  60. Kudo, K., Wati, H., Qiao, C., Arita, J., and Kanba, S. (2005). Age-related disturbance of memory and CREB phosphorylation in CA1 area of hippocampus of rats. Brain Res. 1054, 30-37. https://doi.org/10.1016/j.brainres.2005.06.045
  61. Lamarre-Vincent, N. and Hsieh-Wilson, L.C. (2003). Dynamic glycosylation of the transcription factor CREB: a potential role in gene regulation. J. Am. Chem. Soc. 125, 6612-6613. https://doi.org/10.1021/ja028200t
  62. Landles, C. and Bates, G.P. (2004). Huntingtin and the molecular pathogenesis of Huntington's disease. Fourth in molecular medicine review series. EMBO Rep. 5, 958-963. https://doi.org/10.1038/sj.embor.7400250
  63. Li, G., Jiang, Q., and Xu, K. (2019). CREB family: a significant role in liver fibrosis. Biochimie 163, 94-100. https://doi.org/10.1016/j.biochi.2019.05.014
  64. Liang, H. and Ward, W.F. (2006). PGC-1α: a key regulator of energy metabolism. Adv. Physiol. Educ. 30, 145-151. https://doi.org/10.1152/advan.00052.2006
  65. Lin, J., Handschin, C., and Spiegelman, B.M. (2005). Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1, 361-370. https://doi.org/10.1016/j.cmet.2005.05.004
  66. Linnerth-Petrik, N.M., Santry, L.A., Yu, D.L., and Wootton, S.K. (2012). Adeno-associated virus vector mediated expression of an oncogenic retroviral envelope protein induces lung adenocarcinomas in immunocompetent mice. PLoS One 7, e51400.
  67. Liu, J., Liu, B., Yuan, P., Cheng, L., Sun, H., Gui, J., Pan, Y., Huang, D., Chen, H., and Jiang, L. (2021). Role of PKA/CREB/BDNF signaling in PM2.5-induced neurodevelopmental damage to the hippocampal neurons of rats. Ecotoxicol. Environ. Saf. 214, 112005.
  68. Liu, Y., Xu, H., Geng, Y., Xu, D., Zhang, L., Yang, Y., Wei, Z., Zhang, B., Li, S., Gao, X., et al. (2017). Dibutyryl-cAMP attenuates pulmonary fibrosis by blocking myofibroblast differentiation via PKA/CREB/CBP signaling in rats with silicosis. Respir. Res. 18, 38.
  69. Loerch, P.M., Lu, T., Dakin, K.A., Vann, J.M., Isaacs, A., Geula, C., Wang, J., Pan, Y., Gabuzda, D.H., Li, C., et al. (2008). Evolution of the aging brain transcriptome and synaptic regulation. PLoS One 3, e3329.
  70. Ma, Y.Y., Chu, N.N., Guo, C.Y., Han, J.S., and Cui, C.L. (2007). NR2B-containing NMDA receptor is required for morphine-but not stress-induced reinstatement. Exp. Neurol. 203, 309-319. https://doi.org/10.1016/j.expneurol.2006.08.014
  71. Mantamadiotis, T., Lemberger, T., Bleckmann, S.C., Kern, H., Kretz, O., Martin Villalba, A., Tronche, F., Kellendonk, C., Gau, D., Kapfhammer, J., et al. (2002). Disruption of CREB function in brain leads to neurodegeneration. Nat. Genet. 31, 47-54. https://doi.org/10.1038/ng882
  72. Mayo, L.D., Kessler, K.M., Pincheira, R., Warren, R.S., and Donner, D.B. (2001). Vascular endothelial cell growth factor activates CRE-binding protein by signaling through the KDR receptor tyrosine kinase. J. Biol. Chem. 276, 25184-25189. https://doi.org/10.1074/jbc.M102932200
  73. Mayr, B. and Montminy, M. (2001). Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell Biol. 2, 599-609. https://doi.org/10.1038/35085068
  74. McCampbell, A., Taylor, J.P., Taye, A.A., Robitschek, J., Li, M., Walcott, J., Merry, D., Chai, Y., Paulson, H., Sobue, G., et al. (2000). CREB-binding protein sequestration by expanded polyglutamine. Hum. Mol. Genet. 9, 2197-2202. https://doi.org/10.1093/hmg/9.14.2197
  75. Mehrhof, F.B., Muller, F.U., Bergmann, M.W., Li, P., Wang, Y., Schmitz, W., Dietz, R., and Von Harsdorf, R. (2001). In cardiomyocyte hypoxia, insulin-like growth factor-I-induced antiapoptotic signaling requires phosphatidylinositol-3-OH-kinase-dependent and mitogen-activated protein kinase-dependent activation of the transcription factor cAMP response element-binding protein. Circulation 104, 2088-2094. https://doi.org/10.1161/hc4201.097133
  76. Meller, R., Minami, M., Cameron, J.A., Impey, S., Chen, D., Lan, J.Q., Henshall, D.C., and Simon, R.P. (2005). CREB-mediated Bcl-2 protein expression after ischemic preconditioning. J. Cereb. Blood Flow Metab. 25, 234-246. https://doi.org/10.1038/sj.jcbfm.9600024
  77. Mitsuda, N., Ohkubo, N., Tamatani, M., Lee, Y.D., Taniguchi, M., Namikawa, K., Kiyama, H., Yamaguchi, A., Sato, N., Sakata, K., et al. (2001). Activated cAMP-response element-binding protein regulates neuronal expression of presenilin-1. J. Biol. Chem. 276, 9688-9698. https://doi.org/10.1074/jbc.M006153200
  78. Montminy, M., Koo, S.H., and Zhang, X. (2004). The CREB family: key regulators of hepatic metabolism. Ann. Endocrinol. (Paris) 65, 73-75. https://doi.org/10.1016/S0003-4266(04)95634-X
  79. Montminy, M.R., Gonzalez, G.A., and Yamamoto, K.K. (1990). Regulation of cAMP-inducible genes by CREB. Trends Neurosci. 13, 184-188. https://doi.org/10.1016/0166-2236(90)90045-C
  80. Morris, K.A. and Gold, P.E. (2012). Age-related impairments in memory and in CREB and pCREB expression in hippocampus and amygdala following inhibitory avoidance training. Mech. Ageing Dev. 133, 291-299. https://doi.org/10.1016/j.mad.2012.03.004
  81. Noguchi, S., Kumazaki, M., Mori, T., Baba, K., Okuda, M., Mizuno, T., and Akao, Y. (2016). Analysis of microRNA-203 function in CREB/MITF/RAB27a pathway: comparison between canine and human melanoma cells. Vet. Comp. Oncol. 14, 384-394. https://doi.org/10.1111/vco.12118
  82. Oh, G.S., Kim, S.R., Lee, E.S., Yoon, J., Shin, M.K., Ryu, H.K., Kim, D.S., and Kim, S.W. (2022). Regulation of hepatic gluconeogenesis by nuclear receptor coactivator 6. Mol. Cells 45, 180-192. https://doi.org/10.14348/molcells.2022.2222
  83. Oh, K.J., Han, H.S., Kim, M.J., and Koo, S.H. (2013). CREB and FoxO1: two transcription factors for the regulation of hepatic gluconeogenesis. BMB Rep. 46, 567-574. https://doi.org/10.5483/BMBRep.2013.46.12.248
  84. Ollivier, V., Parry, G.C., Cobb, R.R., de Prost, D., and Mackman, N. (1996). Elevated cyclic AMP inhibits NF-κB-mediated transcription in human monocytic cells and endothelial cells. J. Biol. Chem. 271, 20828-20835. https://doi.org/10.1074/jbc.271.34.20828
  85. Ostojic, J., Yoon, Y.S., Sonntag, T., Nguyen, B., Vaughan, J.M., Shokhirev, M., and Montminy, M. (2021). Transcriptional co-activator regulates melanocyte differentiation and oncogenesis by integrating cAMP and MAPK/ERK pathways. Cell Rep. 35, 109136.
  86. Parra-Damas, A., Rubio-Ferrarons, L., Shen, J., and Saura, C.A. (2017). CRTC1 mediates preferential transcription at neuronal activity-regulated CRE/TATA promoters. Sci. Rep. 7, 18004.
  87. Petersen, M.C., Vatner, D.F., and Shulman, G.I. (2017). Regulation of hepatic glucose metabolism in health and disease. Nat. Rev. Endocrinol. 13, 572-587. https://doi.org/10.1038/nrendo.2017.80
  88. Petrij, F., Giles, R.H., Dauwerse, H.G., Saris, J.J., Hennekam, R.C., Masuno, M., Tommerup, N., van Ommen, G.J., Goodman, R.H., and Peters, D.J. (1995). Rubinstein-Taybi syndrome caused by mutations in the transcriptional coactivator CBP. Nature 376, 348-351. https://doi.org/10.1038/376348a0
  89. Pigazzi, M., Manara, E., Baron, E., and Basso, G. (2009). miR-34b targets cyclic AMP-responsive element binding protein in acute myeloid leukemia. Cancer Res. 69, 2471-2478. https://doi.org/10.1158/0008-5472.CAN-08-3404
  90. Pignataro, A., Borreca, A., Ammassari-Teule, M., and Middei, S. (2015). CREB regulates experience-dependent spine formation and enlargement in mouse barrel cortex. Neural Plast. 2015, 651469.
  91. Pittenger, C., Huang, Y.Y., Paletzki, R.F., Bourtchouladze, R., Scanlin, H., Vronskaya, S., and Kandel, E.R. (2002). Reversible inhibition of CREB/ATF transcription factors in region CA1 of the dorsal hippocampus disrupts hippocampus-dependent spatial memory. Neuron 34, 447-462. https://doi.org/10.1016/S0896-6273(02)00684-0
  92. Planavila, A., Rodriguez-Calvo, R., Jove, M., Michalik, L., Wahli, W., Laguna, J.C., and Vazquez-Carrera, M. (2005). Peroxisome proliferator-activated receptor β/δ activation inhibits hypertrophy in neonatal rat cardiomyocytes. Cardiovasc. Res. 65, 832-841. https://doi.org/10.1016/j.cardiores.2004.11.011
  93. Portilla, D., Dai, G., McClure, T., Bates, L., Kurten, R., Megyesi, J., Price, P., and Li, S. (2002). Alterations of PPARα and its coactivator PGC-1 in cisplatin-induced acute renal failure. Kidney Int. 62, 1208-1218. https://doi.org/10.1111/j.1523-1755.2002.kid553.x
  94. Purves, D., Augustine, G.J., Fitzpatrick, D., Hall, W.C., LaMantia, A.S., McNamara, J.O., and White, L.E. (2008). Neuroscience (4th Edition) (Sunderland: Sinauer Associates).
  95. Quinn, P.G. and Granner, D.K. (1990). Cyclic AMP-dependent protein kinase regulates transcription of the phosphoenolpyruvate carboxykinase gene but not binding of nuclear factors to the cyclic AMP regulatory element. Mol. Cell. Biol. 10, 3357-3364.
  96. Rall, T.W., Sutherland, E.W., and Wosilait, W.D. (1956). The relationship of epinephrine and glucagon to liver phosphorylase: iii. Reactivation of liver phosphorylase in slices and in extracts. J. Biol. Chem. 218, 483-495. https://doi.org/10.1016/S0021-9258(18)65911-3
  97. Riccio, A., Ahn, S., Davenport, C.M., Blendy, J.A., and Ginty, D.D. (1999). Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286, 2358-2361. https://doi.org/10.1126/science.286.5448.2358
  98. Rowe, G.C. and Arany, Z. (2014). Genetic models of PGC-1 and glucose metabolism and homeostasis. Rev. Endocr. Metab. Disord. 15, 21-29. https://doi.org/10.1007/s11154-013-9273-5
  99. Rudolph, D., Tafuri, A., Gass, P., Hammerling, G.J., Arnold, B., and Schutz, G. (1998). Impaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein. Proc. Natl. Acad. Sci. U. S. A. 95, 4481-4486. https://doi.org/10.1073/pnas.95.8.4481
  100. Rui, L. (2014). Energy metabolism in the liver. Compr. Physiol. 4, 177-197. https://doi.org/10.1002/cphy.c130024
  101. Sakamoto, K.M. and Frank, D.A. (2009). CREB in the pathophysiology of cancer: implications for targeting transcription factors for cancer therapy. Clin. Cancer Res. 15, 2583-2587. https://doi.org/10.1158/1078-0432.CCR-08-1137
  102. Sandoval, S., Pigazzi, M., and Sakamoto, K.M. (2009). CREB: a key regulator of normal and neoplastic hematopoiesis. Adv. Hematol. 2009, 634292.
  103. Sands, W.A. and Palmer, T.M. (2008). Regulating gene transcription in response to cyclic AMP elevation. Cell. Signal. 20, 460-466. https://doi.org/10.1016/j.cellsig.2007.10.005
  104. Sano, M., Wang, S.C., Shirai, M., Scaglia, F., Xie, M., Sakai, S., Tanaka, T., Kulkarni, P.A., Barger, P.M., Youker, K.A., et al. (2004). Activation of cardiac Cdk9 represses PGC-1 and confers a predisposition to heart failure. EMBO J. 23, 3559-3569. https://doi.org/10.1038/sj.emboj.7600351
  105. Sapio, L., Salzillo, A., Ragone, A., Illiano, M., Spina, A., and Naviglio, S. (2020). Targeting CREB in cancer therapy: a key candidate or one of many? An update. Cancers (Basel) 12, 3166.
  106. Saraiva, M. and O'Garra, A. (2010). The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 10, 170-181. https://doi.org/10.1038/nri2711
  107. Sassone-Corsi, P. (1995). Transcription factors responsive to cAMP. Annu. Rev. Cell Dev. Biol. 11, 355-377. https://doi.org/10.1146/annurev.cb.11.110195.002035
  108. Saura, C.A. and Valero, J. (2011). The role of CREB signaling in Alzheimer's disease and other cognitive disorders. Rev. Neurosci. 22, 153-169. https://doi.org/10.1515/rns.2011.018
  109. Schaefer, K.L., Brachwitz, K., Wai, D.H., Braun, Y., Diallo, R., Korsching, E., Eisenacher, M., Voss, R., Van Valen, F., Baer, C., et al. (2004). Expression profiling of t(12;22) positive clear cell sarcoma of soft tissue cell lines reveals characteristic up-regulation of potential new marker genes including ERBB3. Cancer Res. 64, 3395-3405. https://doi.org/10.1158/0008-5472.CAN-03-0809
  110. Schulte, J.S., Seidl, M.D., Nunes, F., Freese, C., Schneider, M., Schmitz, W., and Muller, F.U. (2012). CREB critically regulates action potential shape and duration in the adult mouse ventricle. Am. J. Physiol. Heart Circ. Physiol. 302, H1998-H2007. https://doi.org/10.1152/ajpheart.00057.2011
  111. Scoditti, E., Massaro, M., Carluccio, M.A., Distante, A., Storelli, C., and De Caterina, R. (2010). PPARγ agonists inhibit angiogenesis by suppressing PKCα-and CREB-mediated COX-2 expression in the human endothelium. Cardiovasc. Res. 86, 302-310. https://doi.org/10.1093/cvr/cvp400
  112. Sekeres, M.J., Neve, R.L., Frankland, P.W., and Josselyn, S.A. (2010). Dorsal hippocampal CREB is both necessary and sufficient for spatial memory. Learn. Mem. 17, 280-283. https://doi.org/10.1101/lm.1785510
  113. Shankar, D.B., Cheng, J.C., Kinjo, K., Federman, N., Moore, T.B., Gill, A., Rao, N.P., Landaw, E.M., and Sakamoto, K.M. (2005). The role of CREB as a proto-oncogene in hematopoiesis and in acute myeloid leukemia. Cancer Cell 7, 351-362. https://doi.org/10.1016/j.ccr.2005.02.018
  114. Smolik, S.M., Rose, R.E., and Goodman, R.H. (1992). A cyclic AMP-responsive element-binding transcriptional activator in Drosophila melanogaster, dCREB-A, is a member of the leucine zipper family. Mol. Cell. Biol. 12, 4123-4131.
  115. Steffan, J.S., Bodai, L., Pallos, J., Poelman, M., McCampbell, A., Apostol, B.L., Kazantsev, A., Schmidt, E., Zhu, Y.Z., Greenwald, M., et al. (2001). Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413, 739-743. https://doi.org/10.1038/35099568
  116. Stepulak, A., Sifringer, M., Rzeski, W., Brocke, K., Gratopp, A., Pohl, E.E., Turski, L., and Ikonomidou, C. (2007). AMPA antagonists inhibit the extracellular signal regulated kinase pathway and suppress lung cancer growth. Cancer Biol. Ther. 6, 1908-1915. https://doi.org/10.4161/cbt.6.12.4965
  117. Steven, A., Friedrich, M., Jank, P., Heimer, N., Budczies, J., Denkert, C., and Seliger, B. (2020). What turns CREB on? And off? And why does it matter? Cell. Mol. Life Sci. 77, 4049-4067. https://doi.org/10.1007/s00018-020-03525-8
  118. Suresh, R. and Mosser, D.M. (2013). Pattern recognition receptors in innate immunity, host defense, and immunopathology. Adv. Physiol. Educ. 37, 284-291. https://doi.org/10.1152/advan.00058.2013
  119. Sutherland, E.W. (1972). Studies on the mechanism of hormone action. Science 177, 401-408. https://doi.org/10.1126/science.177.4047.401
  120. Tabuchi, A., Sakaya, H., Kisukeda, T., Fushiki, H., and Tsuda, M. (2002). Involvement of an upstream stimulatory factor as well as cAMP-responsive element-binding protein in the activation of brain-derived neurotrophic factor gene promoter I. J. Biol. Chem. 277, 35920-35931. https://doi.org/10.1074/jbc.M204784200
  121. Tan, X., Wang, S., Zhu, L., Wu, C., Yin, B., Zhao, J., Yuan, J., Qiang, B., and Peng, X. (2012). cAMP response element-binding protein promotes gliomagenesis by modulating the expression of oncogenic microRNA-23a. Proc. Natl. Acad. Sci. U. S. A. 109, 15805-15810. https://doi.org/10.1073/pnas.1207787109
  122. Tokunou, T., Shibata, R., Kai, H., Ichiki, T., Morisaki, T., Fukuyama, K., Ono, H., Iino, N., Masuda, S., Shimokawa, H., et al. (2003). Apoptosis induced by inhibition of cyclic AMP response element-binding protein in vascular smooth muscle cells. Circulation 108, 1246-1252. https://doi.org/10.1161/01.CIR.0000085164.13439.89
  123. Tran, M., Tam, D., Bardia, A., Bhasin, M., Rowe, G.C., Kher, A., Zsengeller, Z.K., Reza Akhavan-Sharif, M., Khankin, E.V., Saintgeniez, M., et al. (2011). PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice. J. Clin. Invest. 121, 4003-4014. https://doi.org/10.1172/JCI58662
  124. Trivier, E., De Cesare, D., Jacquot, S., Pannetier, S., Zackai, E., Young, I., Mandel, J.L., Sassone-Corsi, P., and Hanauer, A. (1996). Mutations in the kinase Rsk-2 associated with Coffin-Lowry syndrome. Nature 384, 567-570. https://doi.org/10.1038/384567a0
  125. Truong, V., Anand-Srivastava, M.B., and Srivastava, A.K. (2021). Role of cyclic AMP response element binding protein (CREB) in angiotensin II-induced responses in vascular smooth muscle cells. Can. J. Physiol. Pharmacol. 99, 30-35. https://doi.org/10.1139/cjpp-2020-0531
  126. Tully, T., Bourtchouladze, R., Scott, R., and Tallman, J. (2003). Targeting the CREB pathway for memory enhancers. Nat. Rev. Drug Discov. 2, 267-277. https://doi.org/10.1038/nrd1061
  127. Usui, T., Smolik, S.M., and Goodman, R.H. (1993). Isolation of Drosophila CREB-B: a novel CRE-binding protein. DNA Cell Biol. 12, 589-595. https://doi.org/10.1089/dna.1993.12.589
  128. Vitolo, O.V., Sant'Angelo, A., Costanzo, V., Battaglia, F., Arancio, O., and Shelanski, M. (2002). Amyloid β-peptide inhibition of the PKA/CREB pathway and long-term potentiation: reversibility by drugs that enhance cAMP signaling. Proc. Natl. Acad. Sci. U. S. A. 99, 13217-13221. https://doi.org/10.1073/pnas.172504199
  129. Vo, N., Klein, M.E., Varlamova, O., Keller, D.M., Yamamoto, T., and Goodman, R.H., and Impey, S. (2005). A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc. Natl. Acad. Sci. U. S. A. 102, 16426-16431. https://doi.org/10.1073/pnas.0508448102
  130. Voropaev, H., Gimmelshein Vatkin, M., Shneor, D., Luski, S., Honigman, A., and Frenkel, S. (2019). Infectious knockdown of CREB and HIF-1 for the treatment of metastatic uveal melanoma. Cancers (Basel) 11, 1056.
  131. Wang, G., Cheng, Z., Liu, F., Zhang, H., Li, J., and Li, F. (2015a). CREB is a key negative regulator of carbonic anhydrase IX (CA9) in gastric cancer. Cell. Signal. 27, 1369-1379. https://doi.org/10.1016/j.cellsig.2015.03.019
  132. Wang, H., Xu, J., Lazarovici, P., Quirion, R., and Zheng, W. (2018). cAMP response element-binding protein (CREB): a possible signaling molecule link in the pathophysiology of schizophrenia. Front. Mol. Neurosci. 11, 255.
  133. Wang, R., Zhang, Y.W., Zhang, X., Liu, R., Zhang, X., Hong, S., Xia, K., Xia, J., Zhang, Z., and Xu, H. (2006). Transcriptional regulation of APH-1A and increased γ-secretase cleavage of APP and Notch by HIF-1 and hypoxia. FASEB J. 20, 1275-1277. https://doi.org/10.1096/fj.06-5839fje
  134. Wang, T., Wiater, E., Zhang, X., Thomas, J.B., and Montminy, M. (2021). Crtc modulates fasting programs associated with 1-C metabolism and inhibition of insulin signaling. Proc. Natl. Acad. Sci. U. S. A. 118, e2024865118.
  135. Wang, Y., Viscarra, J., Kim, S.J., and Sul, H.S. (2015b). Transcriptional regulation of hepatic lipogenesis. Nat. Rev. Mol. Cell Biol. 16, 678-689. https://doi.org/10.1038/nrm4074
  136. Wen, A.Y., Sakamoto, K.M., and Miller, L.S. (2010). The role of the transcription factor CREB in immune function. J. Immunol. 185, 6413-6419. https://doi.org/10.4049/jimmunol.1001829
  137. Xia, Y., Zhan, C., Feng, M., Leblanc, M., Ke, E., Yeddula, N., and Verma, I.M. (2018). Targeting CREB pathway suppresses small cell lung cancer. Mol. Cancer Res. 16, 825-832. https://doi.org/10.1158/1541-7786.MCR-17-0576
  138. Xiang, H., Wang, J., and Boxer, L.M. (2006). Role of the cyclic AMP response element in the bcl-2 promoter in the regulation of endogenous Bcl-2 expression and apoptosis in murine B cells. Mol. Cell. Biol. 26, 8599-8606. https://doi.org/10.1128/MCB.01062-06
  139. Xiao, X., Li, B.X., Mitton, B., Ikeda, A., and Sakamoto, K.M. (2010). Targeting CREB for cancer therapy: friend or foe. Curr. Cancer Drug Targets 10, 384-391. https://doi.org/10.2174/156800910791208535
  140. Xie, F., Li, B.X., Kassenbrock, A., Xue, C., Wang, X., Qian, D.Z., Sears, R.C., and Xiao, X. (2015). Identification of a potent inhibitor of CREB-mediated gene transcription with efficacious in vivo anticancer activity. J. Med. Chem. 58, 5075-5087. https://doi.org/10.1021/acs.jmedchem.5b00468
  141. Xing, J., Ginty, D.D., and Greenberg, M.E. (1996). Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 273, 959-963. https://doi.org/10.1126/science.273.5277.959
  142. Yamamoto, K., Ohki, R., Lee, R.T., Ikeda, U., and Shimada, K. (2001). Peroxisome proliferator-activated receptor γ activators inhibit cardiac hypertrophy in cardiac myocytes. Circulation 104, 1670-1675. https://doi.org/10.1161/hc4001.097186
  143. Yin, J.C. and Tully, T. (1996). CREB and the formation of long-term memory. Curr. Opin. Neurobiol. 6, 264-268. https://doi.org/10.1016/S0959-4388(96)80082-1
  144. Yin, J.C., Wallach, J.S., Del Vecchio, M., Wilder, E.L., Zhou, H., Quinn, W.G., and Tully, T. (1994). Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79, 49-58. https://doi.org/10.1016/0092-8674(94)90399-9
  145. Yin, J.C.P., Del Vecchio, M., Zhou, H., and Tully, T. (1995). CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 81, 107-115. https://doi.org/10.1016/0092-8674(95)90375-5
  146. Yin, P., Li, D., Zhao, Q., Cai, M., Wu, Z., Shi, Y., and Su, L. (2021). Gsα deficiency facilitates cardiac remodeling via CREB/ Bmp10-mediated signaling. Cell Death Discov. 7, 391.
  147. Zhang, C., Wu, B., Beglopoulos, V., Wines-Samuelson, M., Zhang, D., Dragatsis, I., Sudhof, T.C., and Shen, J. (2009). Presenilins are essential for regulating neurotransmitter release. Nature 460, 632-636. https://doi.org/10.1038/nature08177
  148. Zhang, J., Yao, Q., Kuang, Y., Ma, Y., Yang, L., Huang, H., Cheng, J., Yang, T., Liu, E., Liang, L., et al. (2014). Prognostic value of coexistence of abnormal expression of micro-RNA-200b and cyclic adenosine monophosphate-responsive element-binding protein 1 in human astrocytoma. Hum. Pathol. 45, 2154-2161. https://doi.org/10.1016/j.humpath.2014.01.025
  149. Zhang, L., Guo, X., Zhang, D., Fan, Y., Qin, L., Dong, S., and Zhang, L. (2017). Upregulated miR-132 in Lgr5(+) gastric cancer stem cell-like cells contributes to cisplatin-resistance via SIRT1/CREB/ABCG2 signaling pathway. Mol. Carcinog. 56, 2022-2034. https://doi.org/10.1002/mc.22656
  150. Zhang, Q., Koser, S.L., and Donkin, S.S. (2016). Propionate induces mRNA expression of gluconeogenic genes in bovine calf hepatocytes. J. Dairy Sci. 99, 3908-3915. https://doi.org/10.3168/jds.2015-10312
  151. Zhang, X., Yu, K., Ma, L., Qian, Z., Tian, X., Miao, Y., Niu, Y., Xu, X., Guo, S., Yang, Y., et al. (2021). Endogenous glutamate determines ferroptosis sensitivity via ADCY10-dependent YAP suppression in lung adenocarcinoma. Theranostics 11, 5650-5674. https://doi.org/10.7150/thno.55482
  152. Zhang, Y., Yang, J., Cui, X., Chen, Y., Zhu, V.F., Hagan, J.P., Wang, H., Yu, X., Hodges, S.E., Fang, J., et al. (2013). A novel epigenetic CREB-miR-373 axis mediates ZIP4-induced pancreatic cancer growth. EMBO Mol. Med. 5, 1322-1334. https://doi.org/10.1002/emmm.201302507
  153. Zhang, Y., Zheng, D., Zhou, T., Song, H., Hulsurkar, M., Su, N., Liu, Y., Wang, Z., Shao, L., Ittmann, M., et al. (2018). Androgen deprivation promotes neuroendocrine differentiation and angiogenesis through CREB-EZH2-TSP1 pathway in prostate cancers. Nat. Commun. 9, 4080.