DOI QR코드

DOI QR Code

In Vitro Study on the Bond Strength Between 3D-Printed Resin and Resin Cement for Pediatric Crown Restoration

소아용 크라운 수복을 위한 3D 프린팅 레진과 레진 시멘트 간의 접착 강도 평가

  • So Yung Kim (Department of Pediatric Dentistry, Yonsei University Dental Hospital) ;
  • Yoosoek Shin (Department of Conservative Dentistry, College of Dentistry, Yonsei University) ;
  • Ik-Hwan Kim (Department of Pediatric Dentistry, Yonsei University Dental Hospital) ;
  • Je Seon Song (Department of Pediatric Dentistry, Yonsei University Dental Hospital)
  • 김소영 (연세대학교 치과대학병원 소아치과학교실) ;
  • 신유석 (연세대학교 치과대학 치과보존학교실) ;
  • 김익환 (연세대학교 치과대학병원 소아치과학교실) ;
  • 송제선 (연세대학교 치과대학병원 소아치과학교실)
  • Received : 2022.11.14
  • Accepted : 2022.12.07
  • Published : 2023.02.28

Abstract

A 3D-printed resin crown is a novel option for esthetic crown restoration for primary teeth, which are typically bonded with resin cement. The purpose of this study was to evaluate the bonding ability of a 3D printing resin and compare it with other indirect resin materials for crown fabrication. The shear bond strengths of two 3D printing resin materials, Graphy (GP) and NextDent (NXT), and two indirect resin materials, VIPI Block (VIPI) and MAZIC Duro (MZ), were compared in the study. For all materials, the shear bond strength at the interface between the surface of the resin material and resin cement was measured. The mean shear bond strength values of GP, NXT, MZ, and VIPI were 23.29 ± 3.88, 26.14 ± 4.67, 25.41 ± 4.03, and 18.79 ± 4.26 MPa, respectively. There was no significant difference among the SBSs of GP, NXT and MZ except for VIPI. The result of this study indicates that the 3D printing resin meets the essential requirement for clinical use by showing clinically adequate bond strength.

3D 프린터로 출력된 레진 크라운은 유치의 심미 수복을 위한 크라운으로 사용될 수 있으며, 접착에는 주로 레진 시멘트가 사용된다. 본 연구의 목적은 크라운 제작용 3D 프린팅 레진의 접착 능력을 평가하고, 이를 다른 레진 간접 수복용 재료들과 비교하는 것이었다. 3D 프린팅 레진인 Graphy (GP)와 NextDent (NXT), 레진 간접 수복용 재료인 MAZIC Duro (MZ)와 VIPI Block (VIPI)의 전단결합강도가 본 연구에서 비교되었다. GP, NXT, MZ, VIPI군의 평균 전단결합강도는 각각 23.29 ± 3.88, 26.14 ± 4.67, 25.41 ± 4.03, 18.79 ± 4.26 MPa였다. VIPI군을 제외한 GP, NXT, MZ군의 평균 전단결합강도 값에는 유의미한 차이가 없었다. 본 연구 결과 3D 프린팅 레진은 레진 시멘트와 임상적으로 허용 가능한 수준의 접착 강도를 나타냈으며, 이에 따라 유치 수복을 위한 크라운 재료로서 적합한 조건을 갖추고 있음을 확인하였다.

Keywords

Acknowledgement

Study was supported by the Korea Medical Device Development Fund grant funded by the Korea government (the Ministry of Science and ICT) (Project Number: 1711138576, KMDF_PR_20200901_0260).

References

  1. Kapur A, Chawla HS, Goyal A, Gaube K : An esthetic point of view in very young children. J Clin Pediatr Dent, 30:99-103, 2005. https://doi.org/10.17796/jcpd.30.2.360k2j4452773418
  2. Mathew MG, Roopa KB, Soni AJ, Khan MM, Kauser A : Evaluation of Clinical Success, Parental and Child Satisfaction of Stainless Steel Crowns and Zirconia Crowns in Primary Molars. J Family Med Prim Care, 9:1418-1423, 2020. https://doi.org/10.4103/jfmpc.jfmpc_1006_19
  3. Walia T, Salami AA, Bashiri R, Hamoodi OM, Rashid F : A randomised controlled trial of three aesthetic full-coronal restorations in primary maxillary teeth. Eur J Paediatr Dent, 15:113-118, 2014. https://doi.org/10.1007/s40368-013-0072-1
  4. Kim D, Shim JS, Lee D, Shin SH, Nam NE, Park KH, Shim JS, Kim JE : Effects of Post-Curing Time on the Mechanical and Color Properties of Three-Dimensional Printed Crown and Bridge Materials. Polymers (Basel), 12:2762, 2020.
  5. Della Bona A, Cantelli V, Britto VT, Collares KF, Stansbury JW : 3D printing restorative materials using a stereolithographic technique: a systematic review. Dent Mater, 37:336-350, 2021. https://doi.org/10.1016/j.dental.2020.11.030
  6. Corazza PH, de Castro HL, Feitosa SA, Kimpara ET, Della Bona A : Influence of CAD-CAM diamond bur deterioration on surface roughness and maximum failure load of Y-TZP-based restorations. Am J Dent, 28:95-99, 2015.
  7. van Noort R : The future of dental devices is digital. Dent Mater, 28:3-12, 2012. https://doi.org/10.1016/j.dental.2011.10.014
  8. Malta DA, Magne P, Monteiro-Junior S : Bond strength and monomer conversion of indirect composite resin restorations, Part 1: Light vs heat polymerization. J Adhes Dent, 16:517-522, 2014.
  9. da Veiga AMA, Cunha AC, Ferreira DM, da Silva Fidalgo TK, Chianca TK, Reis KR, Maia LC : Longevity of direct and indirect resin composite restorations in permanent posterior teeth: A systematic review and meta-analysis. J Dent, 54:1-12, 2016. https://doi.org/10.1016/j.jdent.2016.08.003
  10. Spitznagel FA, Horvath SD, Guess PC, Blatz MB : Resin bond to indirect composite and new ceramic/polymer materials: a review of the literature. J Esthet Restor Dent, 26:382-393, 2014. https://doi.org/10.1111/jerd.12100
  11. Pfeffer S, Jacker-Guhr S, Geurtsen W, Pfeffer TA, Luhrset AK : Microtensile bond strength of luting cements to a 3D printable composite - an in vitro study. Zahnarztl J Int, 2:229-239, 2020.
  12. Holmer L, Othman A, Luhrs AK, von See C : Comparison of the shear bond strength of 3D printed temporary bridges materials, on different types of resin cements and surface treatment. J Clin Exp Dent, 11:E367-E372, 2019. https://doi.org/10.4317/jced.55617
  13. D'Arcangelo C, Vanini L, Casinelli M, Frascaria M, De Angelis F, Vadini M, D'Amario M : Adhesive Cementation of Indirect Composite Inlays and Onlays: A Literature Review. Compend Contin Educ Dent, 36:570-577, 2015.
  14. Abad-Coronel C, Naranjo B, Valdiviezo P : Adhesive Systems Used in Indirect Restorations Cementation: Review of the Literature. Dent J (Basel), 7:71, 2019.
  15. Lee J, Park H, Lee J, Seo H : Shear bonding strength of three cements luted on pediatric zirconia crowns and dentin of primary teeth. J Korean Acad Pediatr Dent, 45:314-323, 2018. https://doi.org/10.5933/JKAPD.2018.45.3.314
  16. Ishii R, Tsujimoto A, Takamizawa T, Tsubota K, Suzuki T, Shimamura Y, Miyazaki M : Influence of surface treatment of contaminated zirconia on surface free energy and resin cement bonding. Dent Mater J, 34:91-97, 2015. https://doi.org/10.4012/dmj.2014-066
  17. Reymus M, Roos M, Eichberger M, Edelhoff D, Hickel R, Stawarczyk B : Bonding to new CAD/CAM resin composites: influence of air abrasion and conditioning agents as pretreatment strategy. Clin Oral Investig, 23:529-538, 2019. https://doi.org/10.1007/s00784-018-2461-7
  18. Kirmali O, Barutcugil C, Harorli O, Kapdan A, Er K : Resin cement to indirect composite resin bonding: effect of various surface treatments. Scanning, 37:89-94, 2015. https://doi.org/10.1002/sca.21183
  19. Bagis YH, Rueggeberg FA : The effect of post-cure heating on residual, unreacted monomer in a commercial resin composite. Dent Mater, 16:244-247, 2000. https://doi.org/10.1016/S0109-5641(00)00006-3
  20. Connor CO, Gavriil D : Predictable bonding of adhesive indirect restorations: factors for success. Br Dent J, 231:287-293, 2021. https://doi.org/10.1038/s41415-021-3336-x
  21. von Fraunhofer JA : Adhesion and cohesion. Int J Dent, 2012:951324, 2012.
  22. Kameyama A, Bonroy K, Elsen C, Luhrs AK, Suyama Y, Peumans M, Van Meerbeek B, De Munck J : Luting of CAD/CAM ceramic inlays: direct composite versus dual-cure luting cement. Biomed Mater Eng, 25:279-288, 2015. https://doi.org/10.3233/BME-151274
  23. Kim JE, Lim JH, Kang YJ, Kim JH, Shim JS : Effect of Pressure and Particle Size During Aluminum Oxide Air Abrasion on the Flexural Strength of Disperse-Filled Composite and Polymer-Infiltrated Ceramic Network Materials. Polymers (Basel), 12:1396, 2020.
  24. Nagaoka N, Yoshihara K, Feitosa VP, Tamada Y, Irie M, Yoshida Y, Van Meerbeek B, Hayakawa S : Chemical interaction mechanism of 10-MDP with zirconia. Sci Rep, 7:45563, 2017.
  25. Hagino R, Mine A, Matsumoto M, Yumitate M, Ban S, Yamanaka A, Ishida M, Miura J, VAN Meerbeek B, Yatani H : Combination of a silane coupling agent and resin primer reinforces bonding effectiveness to a CAD/CAM indirect resin composite block. Dent Mater J, 40:1445-1452, 2021. https://doi.org/10.4012/dmj.2021-083
  26. Matsumura H, Yanagida H, Tanoue N, Atsuta M, Shimoe S : Shear bond strength of resin composite veneering material to gold alloy with varying metal surface preparations. J Prosthet Dent, 86:315-319, 2001. https://doi.org/10.1067/mpr.2001.114823
  27. Turner CW, Meiers JC : Repair of an aged, contaminated indirect composite resin with a direct, visible-light-cured composite resin. Oper Dent, 18:187-194, 1993.
  28. Van Ende A, De Munck J, Van Landuyt KL, Poitevin A, Peumans M, Van Meerbeek B : Bulk-filling of high C-factor posterior cavities: effect on adhesion to cavity-bottom dentin. Dent Mater, 29:269-277, 2013. https://doi.org/10.1016/j.dental.2012.11.002
  29. Liebermann A, Keul C, Bahr N, Edelhoff D, Eichberger M, Roos M, Stawarczyk B : Impact of plasma treatment of PMMA-based CAD/CAM blanks on surface properties as well as on adhesion to self-adhesive resin composite cements. Dent Mater, 29:935-944, 2013. https://doi.org/10.1016/j.dental.2013.06.004
  30. Zafar MS : Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update. Polymers (Basel), 12:2299, 2020.